PURPOSES : In this study, we aimed to investigate the heat transfer characteristics of asphalt mixtures by water saturation.
METHODS : On the basis of the literature review, the heat transfer characteristics of the samples were analyzed using a thermal accumulation experiment. The types of samples used were WC2 (dense asphalt mixture), ReWC2 (used 30% recycled aggregate), and PA13 (drainage asphalt mixture). The samples were compacted using a gyratory compactor. An infrared lamp simulating insolation was used to continuously heat the asphalt sample. Through this experiment, the upper and lower temperatures and heat flux of the specimen according to its thickness and condition were measured, and the change in its thermal conductivity was analyzed.
RESULTS : The results of the laboratory experiment indicated that the dry sample showed lower thermal conductivity than the saturated sample. The amount of evaporation varied depending on the internal pores of the sample. Additionally, the amount of evaporation changed the heat transfer characteristics of the specimen.
CONCLUSIONS : An asphalt mixture with high porosity decreased the degree of increase in thermal conductivity, compared to mixtures with low porosity, under semi-saturated conditions; this was attributed to the difference in thermal conductivity between air and water during saturation. The results of this study on the heat transfer characteristics of asphalt pavements could be used as basic data for thermal energy harvesting of asphalt pavements.
본 연구는 효과적인 열전도를위한 거시적 구조 구성과 단위 구조 변화의 동시 설계를 위한 위상 최적화 방법을 제시한다. 거시적 규모의 구조 내에서 위치에 따른 단위 구조의 형태 변화는 거시적 규모뿐만 아니라 미시적 단위의 설계도 가능하며 등방성 단위 구조를 사용하는 것보다 더 나은 성능을 제공할 수 있다. 이 결과로 두 구성을 결합한 기능적으로 등급의 복합 구조가 생성된다. 대표 체적 요소 (RVE) 방법은 형태 변화에 따른 다중 재료 기반 단위 구조의 다양한 열전도 특성을 얻기 위해 적용된다. RVE 분석 결과를 바탕으 로 머신 러닝 기법을 이용하여 특정 형태의 단위 구조물의 물성치를 도출할 수 있다. 거시적 위상 최적화는 기존의 SIMP 방법을 사용하여 수행되며, 거시 구조를 구성하는 단위 구조는 동시 최적화 과정에 따라 열전도 성능을 향상시키기 위한 다양한 형태를 가질 수 있다. 제안된 방법의 효과를 확인하기 위해 열 컴플라이언스 최소화 문제의 수치예가 제공된다.
The temperature distributions were numerically calculated for the two-dimensional transient conduction heat transfer problem of a square plate. The obtained temperature distributions were converted into colors to create images, and they were provided as learning and test data of CNN. Classification and regression networks were constructed to predict representative wall temperatures through CNN analysis. As results, the classification networks predicted the representative wall temperatures with an accuracy of 99.91% by erroneously predicting only 1 out of 1100 images. The regression networks predicted the representative wall temperatures within errors of C. From this fact, it was confirmed that the deep learning techniques are applicable to the transient conduction heat transfer problems.
In this analysis, the analytical model was verified through the normal mode analysis of the piston for the 2.9 liter IDI (indirect injection) engine. Heat transfer analysis was carried out by selecting two cases of applied temperature using the validated model. The first case was a condition of 350℃ on the piston upper surface and 100℃ on the piston body and inner wall. In the second case, the conditions were set to give a temperature of 400℃ on the upper surface of the piston and 100℃ on the piston body and the inner wall. In addition, the temperature distribution due to heat transfer was obtained for the pistons with boundary conditions of two cases, and then the thermal stress distribution due to thermal expansion was obtained using the input. Using this analysis result, the thermal stress caused by thermal expansion due to the thermal conduction of the piston is examined and used as the basic data for design.
Boundary element solution method is introduced for radiation heat transfer problem with objects inside a 2-D enclosure, where shadow zone exists. Surfaces are assumed as diffuse gray in a transparent medium. Boundary integral and boundary element equations were derived from radiation transfer equation, and their theory is reviewed. Also the process of solution methods to implement the boundary element method is analysed and explained with consideration of shadow effects. BEM solution results are compared with two test problems and are found to be good agreements with the both analytic and ANSYS Fluent numerical solutions. Therefore the current BEM analysis for radiation heat transfer problem can be considered as verified, and their efficacy with engineering applicability is established as a result.
SUS bars such as 304, 316 series have been widely used to manufacture the adapters and fittings, which include many hexagonal bolts and nuts. The purpose of this study is to investigate the characteristics of heat conduction of SUS bar according to rotation of cutting tool. Temperature distribution in SUS bar can be achieved by using numerical analysis of heat conduction, thus it may be of help to the optimal operation of peeling machine. As the results, as the rotation of cutting tool is increased, both maximum cutting temperature and depth of heat conduction are decreased. Moreover as the angle of SUS bar is increased, it shows that maximum cutting temperature is decreased, on the other hand, depth of heat conduction is increased.
본 논문에서는 애조인 설계민감도(DSA)를 사용하여 평형상태의 열전도문제에서 수치적으로 얻어진 위상 최적설계를 실험적으로 검증하였다. 애조인 변수법을 이용하면 해석에서 사용되었던 행렬시스템을 애조인 문제를 풀 때 그대로 활용가능하기 때문에 설계민감도를 얻는데 필요한 계산을 매우 효율적으로 수행할 수 있다. 위상 최적설계를 위해서 설계변수는 정규화된 재료밀도 함수로 정하였다. 목적함수는 구조물의 열 컴플라이언스이고 제한조건은 허용 가능한 재료량이다. 또한 열화상카메라를 활용하여 이러한 위상 최적설계로 얻어진 수치적 결과를 부피가 동일하도록 직관적으로 설계된 디자인과 비교하여 실험적으로 검증하였다. 위상 최적설계로 얻어진 결과를 실제로 제작하기 위해 간단한 수치기법을 통해 점 정보로 변환한 후 역설계 상용프로그램을 이용하여 CAD 모델링을 수행한다. 이를 바탕으로 위상 최적설계 결과를 CNC(Computerized Numerically Controlled machine tools) 선반으로 제작하였다.
By Multiple-measurement method using Inverse Heat Conduction Method and parameter estimation method, thermo physical properties were measured, and its estimation accuracies were compared with other reference data. Values of the thermophysical properties determined from the measurement method are in the range of data reported in the literature. From the above, it should be pointed out that the inverse algorithm and multiple measurement method is particularly simple to code and can be run on the personal computer used for the data acquisition. Especially, the inverse algorithm for a heat flux determination can be practically used in every case where the surface measurement are not accessible and where it is impossible to correctly place some sensors with the body. It is found that the measurement method is more practical, convenient and time-saving than other steady-state methods.
High resolution observations of cluster of galaxies by Chandra have revealed the existence of an X-ray emitting comet-like galaxy C153 in the core of cluster of galaxies A2125. The galaxy C153 moving fast in the cluster core has a distinct X-ray tail on one side, obviously due to ram pressure stripping, since the galaxy C153 crossed the central region of A2125. The X-ray emitting plasma in the tail is substantially cooler than the ambient plasma. We present results of two-dimensional magnetohydrodynamic simulations of the time evolution of a sub clump like C153 moving in magnetized intergalactic matter. Anisotropic heat conduction is included. We found that the magnetic fields are essential for the existence of the cool X-ray tail, because in non-magnetized plasma the cooler sub clump tail is heated up by isotropic heat conduction from the hot ambient plasma and does not form such a comet-like tail.
본 연구의 목적은 해석적 방법을 통하여 내화 재료의 특성을 파악하고 섬유 강화 폴리머로 보강된 철근콘크리트의 보의 적절한 내화설계 방법을 제안하는 것이다. 이를 위해, 내화재료의 가열실험을 실시하고 유한요소해석을 통해 열전도율과 비열을 구하고 또한 고온에서 FRP로 보강된 철근콘크리트 보 실험체에 대한 유한요소 해석을 통해 실험결과와 해석결과를 비교하였다. 이 과정에서 실험과 해석적 접근의 신뢰성을 확인하였다. 최종적으로 FRP로 보강된 철근콘크리트 보의 열적특성을 제안된 해석 방법으로 분석하고 고온으로 감소된 휨내력을 계산하였다. 최종적으로 제안된 방법을 이용하여 FRP로 보강된 부재에서 고온 노출시 열특성을 반영한 부재의 열전도를 파악하고 이를 이용하여 내력을 산정할 수 있는 것으로 나타났다.