검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        In the nuclear environment, sensors ensure safety, monitoring, and operational efficiency under various operating conditions. These sensors come in various forms, each tailored to specific purposes, including nuclear safety and security, waste treatment and storage, gas leak detection, temperature and humidity monitoring, and corrosion detection. Ensuring the longevity of sensors without the need for frequent replacements is a vital goal for researchers in this field. This paper explores materials that can act as shields to protect sensors from harsh environmental conditions (high radiation and temperatures) to enhance their lifetime. The types of material that had been explored were divided into categories: metal and non-metal. Fourteen types of metal and seven different plastic materials were studied and focused on their characteristics and current applications. Considering properties like melting point, intensity, and conductivity, plastic materials are chosen to be examined as sensor shielding material. A preliminary experiment was conducted to verify signal characteristics changes by shielding material. Metal material and plastic material each were placed in the middle of the granite and the target sensor. The result showed that when metal is between the granite and the sensor, the density and impedance are higher in granite than in the metal. This leads to signal attenuation and a shift in resonance frequency, while plastic does not. Therefore, PPS (Polyphenylene sulfide) and PAI (Polyamide-imide) have lower density and impedance than granite while also possessing heat, moisture, and radiation resistance for effective shielding.
        2.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal and wind panels are installed on offshore oil and gas platforms to protect personnel, equipment and structures. However, in general, panels are designed and manufactured through trial and error based on performance tests. For this reason, it is difficult to develop and design a heat sink in the Korean shipbuilding and offshore equipment industry due to the lack of performance test data and limited experience. In this study, the experimental results performed to verify the performance of the thermal and wind panels were analyzed, and the characteristics and performance characteristics of the thermal and wind panels were investigated. The conclusions drawn from this study will be useful in terms of the design and development of shielding.
        4,000원
        4.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The EMI shield material with narrow width has some deficiencies in shielding capability and this deficiencies are caused by the inconsistent relationship between the inductance and temperature after heat treatment. This study is performed to develop a nano crystal magnetization heat treatment process technology and design a EMI shielding material with wide width up to 350mm. As a result, the performance of the developed wide EMI shield material satisfies all the objects of this study such as the inductance, thickness, permeability, ribbon productivity, lamination productivity. Also, we find that this wide EMI shield material can be used effectively for the EMI shield room, large medical equipment and so on.
        4,000원
        5.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The RFID (Radio-Frequency Identification) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. Some RFID tags have been used in severe environment of temperature ranged from to for a long time and may cause serious problems such as signal error, short life cycle and explosion. Conventionally, the RFID tags for high temperature applications consisted of Fe-alloy housing part, ceramic powder and RFID sensor. However, it has disadvantage of heavy weight, signal noise and heat shield capability. In this study, we newly applied the aluminum porous materials fabricated by polymer leaching process into RFID tags in order to improve heat shielding ability, and compared the properties of RFID tag inserted by aluminum porous with the conventional one.
        4,000원