검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Water-in-Oil (W/O) emulsions are widely used in cosmetics. However, O/W (Oil-in-Water) emulsions are generally superior to W/O emulsions in terms of stability. In this study, we investigated the changes of viscosity, the size of emulsion droplets, and rheological properties of emulsions prepared using distearyldimonium chloride (DDC), magnesium aluminum silicate (MAS) and quaternium-18 hectorite (QH). In addition to the changes of the composition, we tested the condition of homogenization including rotation per minute of the mixer and the mixing time. The viscosity of emulsions with DDC and AMS were not changed with time and the stability of emulsions was stable during the storage time. However, the fluidity of emulsions were low due to the forming gel network in the emulsions. The gelling power of the emulsions with QH was rather weaker than that of the emulsions with DDC and MAS. The viscosity of emulsions with QH was gradually reduced and the phase separation of emulsions with high concentration of oil was observed throughout the storage time, however, the stability of emulsions with DDC, MAS and QH was excellent, the fluidity of emulsions was enhanced, and the viscosity of emulsions was sustained for a long time after setting of emulsions.
        4,000원
        2.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        Li을 포함하는 삼팔면체 스멕타이트 계열의 헥토라이트가 터키 서부 퇴적 기원의 붕소광상에서 다량 존재하는 것이 확인되었으며, Li을 포함하는 헥토라이트는 리튬 자원으로서의 개발 가능성이 높 기 때문에 많은 관심의 대상이 되고 있다. 헥토라이트의 열적 변화와 산에 대한 특성은 산업적인 적용 을 위해서 매우 중요한 성질임에도 불구하고 아직 완전하게 이해된 것이 없다. 이번 연구에서는 터키 붕소광상 중 Li2O 함량이 가장 높은 비가디치 광상에서 채취된 점토광석을 이용하였다. 채취한 점토 광석 내에 존재하는 헥토라이트를 Stoke’s Law를 이용하여 분리한 후 열 및 산 처리 실험을 실시하여 특성 변화를 검토하였다. 헥토라이트는 84℃ 부근에서 흡착수 및 층간수의 탈수에 의한 강한 흡열반 응이 일어나며, 600℃ 이후 결정수의 탈수에 의한 흡열반응이 일어난다. 저온의 흡열반응은 약 6%의 많은 중량 감소를 동반한다. 762℃ 부근에서 헥토라이트가 완화휘석, 크리스토발라이트 및 비정질 산 화철 광물로 분해되는 발열반응이 일어난다. 0.1 M 농도의 무기산으로 1시간 헥토라이트를 반응시킨 결과 황산 ≥ 염산 > 질산 순으로 용해 정도가 높았다.
        3.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        수열법에 의하여 합성된 헥토라이트의 물리화학적 특성을 연구하였다. 조건에 따른 저면간격의 변화양상을 관찰하기 위하여, 가열실험, pH 변화실험 및 유기용매 치환 실험을 수행하였으며, 헥토라이트의 특성평가를 위하여 IR 및 CEC, MB, 팽윤도, 비료면적 등을 측정하였다. 또한 헥토라이트의 기능성 향상을 위한 타물질과의 혼합 가능 고액비를 측정하였다. 가열 실험결과, (001)면의 저면간격은 12.63 a (상온)으로부터 10.19 a (650℃)으로 감소하였고, pH 7인 경우 가장 낮은 저면간격(13.33 a)을 보인 반면, 이를 기준점으로 pH 〉 7과 pH 〈 7인 영역에서 점차 증가하는 추세를 보였다. 유기용매 치환 시, (001)면의 저면간격은 디에틸에테의(12.86 a), 아세토니트릴(13.31a), 메칠알콜(13.59 a), 에칠알콜(14.05 a), 아세톤(15.69 a) 및 에틸렌 글리콜(17.42 a) 순으로 증가하였다. IR 분석 결과, 기존 타연구자들의 결과와 일치하였으며, 치토라이트의 CEC, MB, 팽윤도 및 비교면적은 각각 105 cmol/, 80 cmol/kg, 68~74ml/2g 및 213m2/g이었다. 또한 헥토라이트의 기능성 향상을 위한 타물질과의 혼합 가능비(헥토라이트/증류수)는 2/100 이하임을 확인하였다.
        4.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        물유리, 수산화 마그네슘, 리튬염을 이용하여 90±5℃에서 2단계로 수열반응시켜 팽윤성이 우수한 12 a 헥토라이트를 합성하였다. 합성과정은 우선 SiO2 성분을 약 30% 함유한 물유리와 수산화 마그네슘을 화학양론적 조성으로 물에 혼합하고 교반시키면서 pH를 6~8로 유지시켰다. 그 후 수용액을 90±5℃의 온도에서 1차로 반응시켜 슬러리 형태의 전구체(precursor)를 제조하였으며 이것을 세척하여 과잉염을 제거하였다. 이때, 리튬 (ie, LiCl)을 팔면체 치환용 이온으로 혼합하였다. 위와 같이 제조된 수용액을 약 10시간 동안 위와 동일한 온도에서 2차로 반응시켜 겔 형태의 헥토라이트를 생성시켰다. 합성된 헥토라이트의 분말 X-선 회절패턴은 자연산 헥토라이트와 일치하였고 FE-SEM으로 관찰한 결과, 직경 50 nm의 균질한 입자로 이루어져 있었다. 이온교환능력과 팽윤성을 측정한 결과, 각각 90 cmol/kg, 60~70 ml/2 g으로 확인되었으며 에칠렌글리콜 처리 후, 저면간격은 12 a에서 17.4 a으로 이동하였다.