검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to analyze the pressure drop of the fluid passing through the hydraulic coupler, a flow model using the Computational Fluid Dynamics (CFD) analysis technique was developed and the fluid flow rate and pressure distribution inside the coupler were analyzed. The analysis model was corrected by comparing the pressure drop measurement using a 6.35mm hydraulic coupler with the ISO reference value and the simulation prediction value. Using the calibrated model, the flow rate and pressure drop of 13 types of hydraulic couplers distributed on the market were analyzed, and their performance was determined by comparing them with ISO reference values. In the case of type A coupler, the pressure drop was generally higher than the ISO reference value, and in the case of type B coupler, the pressure drop was similar to or lower than the ISO reference value. It was confirmed that the complex flow analysis inside the hydraulic coupler could be easily performed through computational fluid dynamics (CFD) modeling, and based on this, problems could be identified and performance could be improved performance.
        4,000원
        2.
        2016.05 구독 인증기관·개인회원 무료
        정삼투막 성능 예측에는 Solution-diffusion model이 지배적으로 활용되어 왔으나, 기존 연구에서 수압과 삼투압이 동시에 작용하는 가압형 정삼투 공정에 대한 예측정확도가 감소하며, 이를 위해 수압이 투과성능에 미치는 영향을 convection과 diffusion을 동시에 고려해야한다는 연구결과가 보고되었다. 본 연구에서는 CTA-ES 및 PA-TFC 정삼투막을 이용하였으며, 활성층 측에는 NaCl 용액을, 지지층 측에는 증류수를 주입하고, 활성층 측에 삼투압과 동일한 수압을 가하여 농도변화에 따른 수투과도 및 염투과도의 변화양상을 평가하였다.
        3.
        2016.05 구독 인증기관·개인회원 무료
        사이드 스트림 방식의 막 모듈을 대상으로 유입 유량을 수직으로 균등하게 분포시킬 수 있는 방안을 CFD로 설계한 결과, 내부 유입 수리구조에 유공 격벽 을 설치함으로써 모듈내로의 유입유량은 표준편차 기준으로 약 40% 정도 감소 됨을 확인하였다. 또한 CFD 결과를 검증하고 사이드 스트림 막 모듈의 편중된 오염의 원인을 조사하기 위해 수행된 입자영상유속 측정 결과로부터 유입구 반대편 유공에서 막 모듈 내부로 들어오는 수체의 유속이 상대적으로 커 수체의 모멘텀이 유입구 측벽에 강한 전단력을 발생하지만 유입구 반대 측벽에서는 사류가 형성됨을 확인하였다.
        4.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydraulic equipments has a high utilization in the many works such as the excavation, planation and crane works in the construction sites. They are an essential equipments in the construction site and the loading & unloading works of the large size objects. In the many parts which are composed of the hydraulic equipments, the main control valve(MCV) is the core of the equipments. The hydraulic energy from the pump controls the direction and the rate of flow by MCV. And the flow rate of the MCV inlet operate some actuators to perform the diverse action of the spool. So, it is important to analysis the shape of the flow path and the notch of the spool. In order to perform the optimal design of the 6-way valve, the study for the analysis of the flow path and the pressure distribution according to the pressure control, which to meet use condition, must be performed. In this study, we carried out the reverse-engineering of the MCV using the parametric technique as the first step in the research of the MCV. And we analyzed the shape of the flow path and the pressure distribution for the notch of the spool using the optimal modeling of the MCV.
        4,000원
        6.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pressure retarded osmosis (PRO) process is one of membrane processes for harvesting renewable energy by using salinity difference between feed and draw solutions. Power is generated by permeation flux multiplied by hydraulic pressure in draw side. Membrane fouling phenomena in PRO process is presumed to be less sever, but it is inevitable. Membrane fouling in PRO process decreases water permeation through membrane, resulting in significant power production decline. This study intended to investigate the effect of hydraulic pressure in PRO process on alginate induced organic fouling as high and low hydraulic pressures (6.5 bar and 12 bar) were applied for 24 h under the same initial water flux. In addition, organic fouling in draw side from the presence of foulant (sodium alginate) in draw solution was examined. As major results, hydraulic pressure was found to be not a significant factor affecting in PRO organic fouling as long as the same initial water flux is maintained, inidicating that operating PRO process with high hydraulic pressure for efficient energy harvesting will not cause severe organic fouling. In addition, flux decline was negligible from the presence of organic foulant in draw side.
        4,000원
        7.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using a high-rise building water piping after hydrostatic test of the reliability of the leak to be completed if the pressure is maintained until the leak is not commercially available considered. Due to the nature of high-rise buildings and the construction period will take several years from the lower levels of use of the water supply and fire fighting water pipe construction is in progress, the order of which I do most of the first pipe to the construction and more than three years. So kind of riser pipe is complete, install the valve in the basement by installing an automatic pump to maintain a constant pressure after hydrostatic test and after each floor plumbing piping is complete, the progress of the hydrostatic test without undergoing a separate branch pipe the valve is opened automatically when the number of the pressing pressure of the structure. I kind of do and keep working pressure of pipe until the completion of the construction work to keep the damage to human error when it is intended to prepare. In winter, the frost protection and an alternative to drainage water pipe is damaged or deformed, even if unaware of the finishing work to the building, the use of the damage caused by a leak in a after construction of finish work to be expected. Alternative to reduce this damage if the pressure test without fear of freezing to help maintain long-term commercial pressures may be considered.
        4,000원
        10.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.