검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report plasma-assisted molecular beam epitaxy of InXGa1-XN films on c-plane sapphire substrates. Prior to thegrowth of InXGa1-XN films, GaN film was grown on the nitride c-plane sapphire substrate by two-dimensional (2D) growthmode. For the growth of GaN, Ga flux of 3.7×10−8 torr as a beam equivalent pressure (BEP) and a plasma power of 150W with a nitrogen flow rate of 0.76 sccm were fixed. The growth of 2D GaN growth was confirmed by in-situ reflection high-energy electron diffraction (RHEED) by observing a streaky RHEED pattern with a strong specular spot. InN films showedlower growth rates even with the same growth conditions (same growth temperature, same plasma condition, and same BEPvalue of III element) than those of GaN films. It was observed that the growth rate of GaN is 1.7 times higher than that ofInN, which is probably caused by the higher vapor pressure of In. For the growth of InxGa1-xN films with different Incompositions, total III-element flux (Ga plus In BEPs) was set to 3.7×10−8 torr, which was the BEP value for the 2D growthof GaN. The In compositions of the InxGa1-xN films were determined to be 28, 41, 45, and 53% based on the peak positionof (0002) reflection in x-ray θ-2θ measurements. The growth of InxGa1-xN films did not show a streaky RHEED pattern butshowed spotty patterns with weak streaky lines. This means that the net sticking coefficients of In and Ga, considered basedon the growth rates of GaN and InN, are not the only factor governing the growth mode; another factor such as migrationvelocity should be considered. The sample with an In composition of 41% showed the lowest full width at half maximum valueof 0.20 degree from the x-ray (0002) omega rocking curve measurements and the lowest root mean square roughness valueof 0.71nm.
        4,000원
        2.
        2008.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with 1~2nm height and 40~50nm diameter were formed by the S-K growth mode. Dome shape InGaN dots with 200~400nm diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).
        4,000원