The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (Syn- DB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.
The radwaste repository consists of a multi-barrier, including natural and engineered barriers. The repository’s long-term safety is ensured by using the isolation and delay functions of the multi-barrier. Among them, natural barriers are difficult to artificially improve and have a long time scale. Therefore, in order to evaluate its performance, site characteristics should be investigated for a sufficient period using various analytical methods. Natural barriers are classified into lithological and structural characteristics and investigated. Structural factors such as fractures, faults, and joints are very important in a natural barrier because they can serve as a flow path for groundwater in performance evaluation. Considering the condition that the radioactive waste repository should be located in the deep part, the drill core is an important subject that can identify deep geological properties that could not be confirmed near the surface. However, in many previous studies, a unified method has not been used to define the boundaries of structural factors. Therefore, it is necessary to derive a method suitable for site characteristics by applying and comparing the boundary definition criteria of various structural factors to boreholes. This study utilized the 1,000 m deep AH-3 and DB-2 boreholes and the 500 m deep AH-1 and YS- 1 boreholes drilled around the KURT (KAERI Underground Research Tunnel) site. Methods applied to define the brittle structure boundary include comparing background levels of fracture and fracture density, excluding sections outside the zone of influence of deformation, and confining the zone to areas of concentrated deformation. All of these methods are analyzed along scanlines from the brittle structure. Deriving a site-specific method will contribute to reducing the uncertainties that may arise when analyzing the long-term evolution of brittle structures within natural barriers.
Long-term climate and surface environment changes can influence the geological subsurface environment evolution. In this context, a fluid flow pathway developing and connection possibility can be increased between the near-surface zone and deep depth underground. Thus, it is necessary to identify and prepare for the overall fluid flow at the entire geological system to minimize uncertainty on the spent nuclear fuel (SNF) disposal safety. The fluid flow outside the subsurface environment is initially penetrated through the surface and then the unsaturated area. Thus, the previously proved reports, POSIVA in Finland, suggested that sequential research about the fluid infiltration experiment (INEX) and the investigation is necessary. Characterizing the unsaturated zone can help predict changes and ensure the safety of SNFs according to geological long-term evolution. For example, the INEX test was conducted at the upper part of ONKALO, about 50 to 100 m depth, to understand the geochemical evolution of the groundwater through the unsaturated zone, to evaluate the main flow of groundwater that can approach the SNF disposal reservoir, and to estimate the decreasing progress of the buffering capacity along the pathway through the deep geological disposal. In the present study, a preliminary test was performed in the UNsaturated-zone In-situ Test (UNIT) facility near the KAERI underground research tunnel to design and establish a methodology for infiltration experiments consistent with the regional characteristics. The results represented the methodological application is possible for characterizing unsaturated-zone to perform infiltration experiments. The scale of the experiment will be expanded sequentially, and continuous research will be conducted for the next application.
Long-term evolution of the surface environments can affect the safety of deep geological disposal. Therefore, it is important to understand the water balance components constituting the water cycle among atmosphere, surface, and subsurface. In Finand, the surface and near-surface hydrological model (SHYD) was developed to calculate the water balance of Olkiluoto Island. Through the intensive site investigations, the data sets as input for the site scale model in present-day conditions have been collected such as transpiration and meteorological data. In this study, weighing lysimeter method was selected to quantify small-scale soil water balance of the vadose zone in the UNsaturated zone In-situ Test facility (UNIT) around KAERI Underground Research Tunnel. Hydrological components such as precipitation, evapotranspiration (ET) and leachate were derived from water balance analysis on the lysimeter measurements in UNIT. Among the hydrological components, actual ET accounts for more than 50% of the annual precipitaion, and thus plays an important role on predicting the hydrological evolution in the future. In this context, actual ET measured from the weighing lysimeter was compared with potential ET estimated from meteorological data using FAO-56 Penman-Monteith method.
The change of surface environments (e.g., climate change, uplift/subsidence, and erosion) can undermine the long-term safety of a high-level radioactive waste repository. Therefore, understanding the water cycle between atmosphere, surface, and subsurface is essential to ensure the long-term safety of deep geological disposal and consequently to gain public acceptance for the repository. Among hydrologic components (e.g., precipitation, interception, runoff, infiltration, evapotranspiration (ET), and recharge) which constitute the water cycle, ET is more than half of the total precipitation and plays a crucial role in the water and energy transfer among the three systems. Although various methods for ET evaluation (e.g., Bowen Ratio, Eddy Covariance, Optical Scintillation, and Weighing Lysimeter methods) have been developed, many influential factors such as vegetation, climate, and moisture content make its accurate evaluation still tricky. In this work, we chose weighing lysimeter and Penman-Monteith methods for direct/indirect estimation of ET, and installed a smart field lysimeter and a micro-meteorological station around KAERI Underground Research Tunnel. Water balance in the unsaturated zone and five climatic variables (air temperature, humidity, precipitation, radiation, and wind speed/direction) were measured more than once per 10 minutes for six months from April to September, 2022. From the measurements, daily actual and potential ET values at the study site were calculated and compared. We also discussed the applicability and limitation of current methods and ET assessments at different spatial scales regarding verifying and validating the developing numerical models.
고준위방사성폐기물 처분시스템에서는 방사성 핵종의 붕괴열과 암반으로부터의 지하수 유입으로 열응력 및 팽윤압의 발생으로 열-수리-역학적 복합거동(coupled thermo-hydro-mechanical behavior)이 예상되기 때문에 한국원자력연구원은 처분시스템 및 근계암반에서의 열-수리-역학적인 복합거동 특성을 평가하기 위해서 지하처분연구시설(KAERI Underground Research Tunnel, KURT)에서 2016년부터 현장시험(In-situ Demonstration of Engineered Barrier System, In-DEBS)을 수행 중에 있다. 본 연구에서는 In-DEBS 현장시험 데이터 분석하고 벤토나이트 완충재와 화강암반에서의 열-수리-역학적 복합거동 특성을 평가하기 위해 TOUGH2-MP/FLAC3D을 이용하여 수치해석을 수행하였다. 또한 벤토나이트 블록과 KURT 화강암의 열-수리-역학적 복합거동 특성을 평가하기 위해 사용된 각각의 열, 수리, 그리고 역학적 모델의 적합성을 평가하고 자 현장시험에서 계측된 온도, 상대습도, 그리고 변위의 결과와 수치해석으로 계산된 결과를 비교하였다. 온도와 상대습도의 계산 결과를 현장 데이터와 비교·분석한 결과, 전체적으로 유사한 경향을 보일 뿐만 아니라 시간에 따라 변화하는 정량적인 값 역시 유사하게 나타났다. 역학적 해석 결과를 살펴보면, 계산된 변위의 전반적인 경향은 유사하지만 해석 결과가 계측 값에 비해 상대적으로 작게 나타났다. 축대칭 모델을 이용하여 In-DEBS 현장시험에서 관측된 열-수리-역학적 복합거동 특성을 전반적으로 평가할 수 있었지만, 벤토나이트 블록 및 KURT 암반에서의 열-수리-역학적 복합거동을 면밀히 살펴보기 위해서는 추후 터널의 형상과 주변 KURT 터널의 영향을 반영한 3차원 해석이 필요할 것으로 판단된다. 본 연구에서 사용된 입력 물성과 열-수리-역학적 모델은 추후 In-DEBS 장기 거동 및 처분시스템에서의 열-수리-역학적 복합거동 특성을 평가하고 예측하는데 활용될 수 있을 것으로 기대된다.
한국원자력연구원 부지 내에 위치한 지하처분연구시설(KAERI Underground Research Tunnel, KURT) 에서는 선진핵주기 고준위폐기물처분시스템(A-KRS)을 기반으로 고준위방사성폐기물을 처분하였을때, 예상되는 공학적방벽(Engineered Barrier System, EBS)과 자연방벽(Natural Barrier System, NBS)에서의 열-수리-역학적 복합거동(Thermo-Hydro-Mechanical coupled behavior)의 특성을 규명하고자 현장시험(In-situ Demonstration of Engineered Barrier System, In-DEBS)을 2012년부터 계획 및 설계를 시작하여, 2016년 5월부터 지하처분연구시설 3번 연구 갤러리(Research gallery 3)에서 진행하고 있다. 현장시험의 데이터를 분석하고 열-수리-역학적 복합거동 특성을 명확히 규명하기 위해서는 경주 벤토나이트와 KURT 암석 및 암반의 열적, 수리적, 그리고 역학적 물성 특성을 반드시 파악하고 있어야만 한다. 이에 본 연구에서는 지금까지 수행된 KURT 부지 특성과 KURT 화강암 및 경주 벤토나이트의 열적, 수리적, 그리고 역학적 특성을 정리하고, 열적, 수리적, 그리고 역학적 모델을 제시하였다. 특히, 온도에 따른 암석의 열팽창계수 변화, 응력에 따른 암석의 투수계수 변화, 포화도에 따른 벤토나이트 및 암석의 열전도도 변화, 포화도에 따른 벤토나이트의 비열 및 흡입력 변화와 같은 열-수리-역학적 복합물성에 대한 다양한 모델을 도출함으로써, In-DEBS 현장시험 결과 분석과 열-수리-역학적 복합거동 특성 평가를 위해 수행 될 수치시험에 필요한 벤토나이트와 암석 및 암반의 입력자료를 제시하고자 하였다.
고준위폐기물 기준처분시스템의 건전성과 처분안전성의 실험적 검증에 필수적 시설인 지하처분연구시설이 한국원자력연구원 부지 내에 건설되었다. 지하처분연구시설의 부지조사 결과에 대해 기술하고, 이 부지에 건설될 지하처분연구시설의 설계, 인허가, 건설 과정과 건설된 시설의 개요에 대해 하였다. 또 지하처분연구시설에서 수행 중인 현장실험에 대해 소개하였다.
대전광역시 유성구 덕진동 한국원자력연구소에 위치한 지하처분연구시설은 2003년 부지조사를 시작으로 최근에 완공하였다. 이 곳의 지질은 약한 변성작용을 받은 지역으로 소규모 단열이 잘 발달되어 있는 곳이다. 단열을 따라서 많은 종류의 이차충전광물들이 존재하지만, 그 중에서 광범위하게 분포하고 지하 핵종 이동에 상당한 영향을 끼치는 방해석의 광물학적 특징을 살펴보았다. 지하처분연구시설 암석 단열에 분포하는 방해석은 다른 이차광물들과 유사하게 단열대를 따라 분포하며, 부분적으로 두꺼운 층을 형성하기도 한다. 방해석으로 충전되어 있는 대부분의 단열대에는 석영, 철 산화물 및 돌로마이트 등이 소량 부성분 광물로 존재하고 있다. 방해석 결정은 일정한 방향성을 가지고 성장한 모습을 보여주고 있으며, 피복 물질로 산화철 광물인 침철석이 방해석 표면으로부터 성장하는데, 주로 방해석 결정의 가장자리 부근과 상부 표면의 용식된 부분에서 과밀하게 성장하고 있다. 터널 벽체의 숏크리트에서 녹아 나온 성분들이 침전되어 새로운 방해석 결정들이 형성되었는데, 지하수의 성분 및 흐름에 의해 형태 변화가 있었다. 단열충전광물 중 방해석은 지하수 화학특성을 변화시키고 핵종의 흡착 거동에 큰 영향을 끼치는 광물로, 본 연구에서 관찰된 방해석의 결정학적 구조 및 표면 특성은 추후 핵종 이동 실험시 중요한 기초 자료로 활용될 것이다.