Alginate lyase from Streptomyces violaceoruber was purified by DEAE sephacel chromatography and SP sepharose chromatography. The specific activity of the purified enzyme was 14.6 units/mg protein, representing a 40.6-fold purification of the crude extract. The final preparation thus obtained showed a single band on Tricine-SDS polyacrylamide gel electrophoresis whose molecular weight was determined to be 23.3 kDa. The polyMG block of sodium alginate was hydrolyzed by the purified alginate lyase and then separated by activated carbon column chromatography and bio gel P-2 gel filtration. The main hydrolysates were composed of hetero type M/G-oligosaccharides with the degrees of polymerization (D.P.) being 6 and 8. To investigate the effects of hetero type M/Goligosaccharides from the sodium alginate on the growth of some intestinal bacteria, cells were cultivated individually on the modified-MRS medium containing D.P. 6 and 8 M/G-oligosaccharides. B. longumgrew 4.25-fold and 6.44-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides compared with those of standard MRS medium. In addition, B. bifidumgrew 3.3-fold and 5.4-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides. In conclusion, D.P. 8 was more effective than D.P. 6 hetero M/G-oligosaccharides as regards the growth of Bifidobacteriumspp. and Lactobacillus spp
Alginate lyase from Streptomyces violaceoruber was purified by DEAE sephacel chromatography and SP sepharose chromatography. The specific activity of the purified enzyme was 14.6 units/mg protein, representing a 40.6-fold purification of the crude extract. The final preparation thus obtained showed a single band on Tricine-SDS polyacrylamide gel electrophoresis whose molecular weight was determined to be 23.3 kDa. The polyMG block of sodium alginate was hydrolyzed by the purified alginate lyase and then separated by activated carbon column chromatography and bio gel P-2 gel filtration. The main hydrolysates were composed of hetero type M/G-oligosaccharides with the degrees of polymerization (D.P.) being 6 and 8. To investigate the effects of hetero type M/Goligosaccharides from the sodium alginate on the growth of some intestinal bacteria, cells were cultivated individually on the modified-MRS medium containing D.P. 6 and 8 M/G-oligosaccharides. B. longumgrew 4.25-fold and 6.44-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides compared with those of standard MRS medium. In addition, B. bifidumgrew 3.3-fold and 5.4-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides. In conclusion, D.P. 8 was more effective than D.P. 6 hetero M/G-oligosaccharides as regards the growth of Bifidobacteriumspp. and Lactobacillus spp. Key words: hetero M/G-oligosaccharides, Streptomyces violaceoruber
Quality characteristics of yogurt with added colored barely flour was investigated during fermentation by lactic acid bacteria. Chemical properties such as moisture, crude protein, starch, ash and β-glucan contents was measured. pH, acidity, brix, Hunter color value and growth of lactic acid bacteria in yogurt was investigated during fermentation by L. acidophilus, L. bulgaricus, and S. thermophilus mixed culture. Crude protein contents of Daeanchal and Boseokchal was 16.16 and 12.17%, respectively. Starch contents of daeanchal were shown lower score. The pH of yogurt by addition of barley flour (Daeanchal) addition 0 and 20% were 6.66 and 6.40, respectively. The pH of yogurt supplemented with barley flour tended to be lower than before control which was not added barely flours and oligosaccharide in yogurt. Titratable acidity of yogurt added barley flour was higher compared with that of control. Brix of yogurt was decreased during fermentation by lactic acid bacteria. Lightness of yogurt added barley flour (Daeanchal) addition 0 and 20% were 83.25 and 69.83, respectively. The original microbial population of the yogurt during 0, 5, 8, and 15 hr fermentation were 7.48, 7.79, 8.15, and 8.71 Log CFU/g, respectively. Moreover, the addition of colored barley flour was to promote the proliferation of lactic acid bacteria in yogurt. In our research, addition of colored barley flours added into the yogurt may also have contributed to growth of lactic acid bacteria.