PURPOSES : The purpose of this study is to establish a scientific and rational structure pavement maintenance technique and management standard through field investigation and analysis method development for measuring damage to structure pavement such that fundamental quality improvement can be promoted and the life of pavement prolonged. METHODS : In this study, the crack, plastic deformation, IRI, and SPI values measured using the existing RoadScanner of a corresponding section, as well as the relative dielectric constant values of a lower deck measured using a ground penetrating radar are reduced. The results of a small impact load test are verified by comparing the modulus of elasticity measured. RESULTS : In the Hongjecheon Overpass, when comparing the suspicion points of deterioration between the center of the lane and the 25 measurement data points of the wheel pass section based on the elastic modulus of the light falling weight deflectometer (LFWD), it is discovered that the lane comprises four centers (16%) and 18 wheelpaths (72%). The percentage of suspected deterioration points in the center is higher than that in the wheelpath. In addition, in the case of the Seoho Bridge, by comparing the suspicious points of deterioration for 11 measurement data points in the middle of the lane and the wheelpath section based on the elastic modulus of the LFWD, it is discovered that five points (45%) in both the middle of the lane and the wheel pass are similar. CONCLUSIONS : In this study, a comparative analysis of the LFWD elastic modulus and SPI factors (crack rate, plastic deformation, and IRI) of the Hongjecheon Overpass and Seoho Bridge is conducted to confirm the factors of pavement breakage. Among them, it is confirmed that it affects the pavement condition the most; however, to consider the LFWD elastic modulus as an evaluation criterion for future structure pavement, the data points must be verified via additional experiments to ensure high reliability.
PURPOSES: The purpose of this study is to evaluate and improve the potential risk of road cave-ins due to subsurface cavities based on the deflection ratio measured with light falling weight deflectometer (LFWD) tests.
METHODS : A cavity database for Seoul was developed and sorted. LFWD tests based on the database were conducted on pavement sections with and without road cavities detected by ground-penetrating radar (GPR) tests; after excavating the area, the cavity sizes were measured. The deflection ratio was applied and analyzed by cavity management grade methods of Japan and Seoul.
RESULTS : The results of comparative analysis show that the deflection method can detect road cavities in areas of the narrow road (or in narrow areas of the road). The average deflection ratio of the cavity sections to the robust sections were 2.48 for high-risk cavities, 1.85 for medium-risk level cavities, and 1.49 for low-risk cavities. Risk levels in Japan and Seoul were reclassified according to the deflection ratios.
CONCLUSIONS : LFWD test results can be applied to verify and improve the subsurface cavity risk level by comparing maximum deflection and deflection ratio between cavity area and non-cavity area at the loading center. LFWD devices also have more advantages compared with larger NDT(Nondestructive test) because FWD and GPR encounter difficulties in traffic control and they could not get in a narrow roads.