The connecting rod is one of the most important parts in automotive engines, transforming the reciprocalmotion of a piston generated by internal combustion into the rotational motion of a crankshaft. Recent advances in highperformance automobile engines demand corresponding technological breakthroughs in the materials for engine parts. Inthe present research, the powder metallurgy (P/M) process was used to replace conventional quenching and/or temperingprocesses for mass production and ultimately for more cost-efficient manufacturing of high strength connecting rods.The development of P/M alloy powder was undertaken not only to achieve the improvement in mechanical properties,but also to enhance the machinability of the P/M processed connecting rods. Specifically MoS2 powders were added aslubricants to non-normalizing Fe-Cr-Mn-V-C alloy powder to improve the post-sintering machinability. The effects ofMoS2 addition on the microstructure, mechanical properties, and machining characteristics were investigated.
The microstructures of Ni-containing P/M steels produced by admixed powders or diffusion alloyed powders are usually heterogeneous. To improve the microstructure homogeneity, the effects of Mo and Cr additions in the prealloyed powder form were examined. The results showed that the microstructural homogeneity was improved and superior mechanical properties were achieved with increases in the alloy content, particularly for the Cr. Such a beneficial effect was attained due to the reduction of the repelling effect between Ni and C, as was demonstrated through thermodynamic analysis using the Thermo-Calc software.