검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이전 정서연구에서는 다양한 정서유발자극을 이용한 정서 차원 연구들을 통해 쾌불쾌 차원(valence)과 각성 차원 (arousal)이란 두 가지의 핵심정서(core affect) 차원을 밝혔다. 최근 등장한 ASMR은 심리적 안정감, 편안함 등의 정서를 유발하는데, 이런 새로운 자극 또한 핵심정서차원에 위치하는지, 사람들에게 일으키는 정서표상은 어떤 양상 을 보이는지 확인하고자 하였다. 본 연구는 3가지 정서유형(부정, 중립, 긍정)으로 구분한 ASMR 영상을 자극으로 사용하였다. 연구1에서는 청각 ASMR, 연구2에서는 청각 및 시청각 ASMR을 자극으로 사용하였고, 각 자극마다 10가지의 형용사에 대해 5점 리커트 척도로 정서경험을 보고받았다. 자료수집 이후 다차원척도법과 분류분석을 실시 하였다. 다차원척도법 결과, 청각 및 시청각 ASMR 모두 핵심정서차원인 쾌불쾌 차원에서 잘 구분되었다. 분류분석 결과, 동일한 감각양상 및 서로 다른 감각양상의 ASMR에 대한 참가자 개인의 정서표상 구분과 참가자들간 정서표 상 구분이 잘 이뤄졌다. 종합적으로 본 연구는 다른 정서유발자극들과 같이 ASMR 또한 핵심정서차원에 위치한다는 것을 시사한다는 점에서 기존의 Russell(1980)의 핵심정서차원 이론을 지지한다. 또한, 감각양상에 상관없이 ASMR 에 대한 참가자 개인의 정서표상이 예측가능하며, 참가자들의 정서표상이 일관적이라는 점을 시사한다.
        4,900원
        2.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기존의 얼굴 정서자극을 이용한 정서 차원연구에서는 쾌불쾌차원(valence)과 각성차원(arousal)이라는 두 가지의 핵심정서(core affect)의 구조가 밝혀졌는데, 이러한 정서차원 구조가 일반적인 지, 그렇지 않다면 정서차원 인식에 영향을 미치는 요인은 무엇인지 파악할 필요가 있다. 본 연구에서는 얼굴 자극의 연령이 주요한 요인 중 하나라고 정하고, 6가지 정서 표현(화난, 역겨운, 두려운, 행복한, 중립적인, 슬픈)이 세 연령(청년, 장년, 노년)층에 차이가 있는지 살펴보았다. 기존 연구에서는 두 얼굴 자극의 유사성을 직접 물어보는 경우가 많았는데, 본 연구에서는 정서 간 유사성 을 직접 측정하지 않고 두 가지 얼굴 자극이 함께 제시될 때 두 정서 표현이 같은지 다른지에 대한 판단을 하도록 하는 간접적인 측정을 하였다. 각 연령별 데이터를 다차원척도법으로 분석한 결과, 세 연령대 모두 화난-역겨운, 그리고 슬픈-역겨운 정서쌍이 유사성이 높았다. 연령간 차이로는 노년 정서자극에 대해서 위 두 쌍 외에 화난-슬픈, 화난-중립적 인, 중립적인-슬픈, 역겨운-두려운의 정서쌍에 대해서도 유사성이 높음을 확인하였으며 이러한 경향은 나머지 두 연령 대에서는 발견되지 않았다. 같은 정서 쌍에 대한 결과에서는 ‘슬픈’이 노년층에서만 정확도가 매우 낮았으며, 이는 슬픔을 표현하는 노년층의 얼굴 정서를 쉽게 구분하기 어렵다는 점을 시사한다. 본 연구는 두 얼굴 정서에 대해 직접적 인 유사성을 묻는 것이 아닌, 정서 판단을 통해 간접적으로 정서 간 유사성을 유도하는 방법으로도 정서 차원 연구가 시사한다. 또한 여러 연령 별로 전반적으로는 쾌불쾌, 각성이라는 주요 정서 차원이 잘 드러나지만 노년층의 특정 정서 표현에 대한 인식이 다른 연령대의 정서 표현보다는 차이가 있을 수 있음을 보여준다.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 멸종위기 어류 25종의 먹이원을 문헌 조사한 결과, 먹이원은 20문, 31강, 58목, 116과, 154속으로 나타났다. 먹이원 중 가장 많은 어류가 섭식한 먹이원은 분류군에 따라 절지동물문, 곤충강, 파리목, 깔따구과로 조사되었으며, 식물류 먹이원은 돌말문, 윷돌말강, 반달돌말목, 반달돌말과로 조사되었다. 계층적 군집분석과 NMDS를 이용하여 멸종위기 어류 20종의 먹이원 유형화 결과, 어류를 주로 포식하는 충식성 어류와 식물플랑크톤을 섭식하는 어류 2가지 유형으로 나타났다. 네트워크 분석의 허브 점수가 높은 먹이원은 파리목, 하루살이목, 날도래목, 강도래목, 딱정벌 래목으로 나타났으며 식물류 먹이원 중 허브 점수가 높은 쪽배돌말목과 반달돌말목, 김발돌말목으로 조사되었다. 먹이원 폭이 큰 어류는 연준모치 (PP)와 열목어, 좀수수치, 가는돌고기, 꼬치동자개, 퉁사리, 묵잡자루, 미호종개로 Bi 지수 값이 0.3 이상으로 조사되어 다양한 먹이를 먹는 것으 로 조사되었다. 반면, 금강모치, 부안종개, 감돌고기, 흰수마자, 다묵장어, 돌상어, 얼룩새코미꾸리, 북방종개는 Bi 지수 값이 0.1 이하로 조사되어 먹이원 다양성이 낮게 조사되었다.
        4,300원
        4.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since the non-metric Multidimensional scaling (nMDS), a data visualization technique, provides with insights about engineering, economic, and scientific applications, it is widely used for analyzing large non-metric multidimensional data sets. The nMDS re
        4,000원
        5.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is designed to 1) understand customers' choice behavior and preference of foodservices in campus and 2) provide recommendation on management strategies for university foodservice manager. Individual interview and focus group interview were used to identify important selection attributes. The questionnaire was developed and distributed to 480 Yonsei university students and statistical data analysis was completed using SPSS WIN/7.5 for descriptive analysis, multidimensional scaling and conjoint analysis. The results of this study were summarized as follows: Students evaluated four foodservices in different ways, and strength/weakness points could be identified from the evaluation patterns. Most students(51.1%) were frequently used 'A' foodservice, though they preferred other foodservices, and cost, mainly, caused the difference. Perceptual map from multidimensional scaling showed that preference and patronage were close with different attributes. Cost was most relatively important attribute to select foodservice in campus from conjoint analysis. Therefore, relative importance of attributes should be considered in customer preference survey for constructing management plan.
        4,000원
        6.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        This paper presents a multi-robot localization based on multidimensional scaling (MDS) in spite of the existence of incomplete and noisy data. While the traditional algorithms for MDS work on the full-rank distance matrix, there might be many missing data in the real world due to occlusions. Moreover, it has no considerations to dealing with the uncertainty due to noisy observations. We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nyström approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).