Various electronic control parts and devices installed in electric vehicles have greatly improved the convenience of occupants, but electromagnetic waves emitted from electronic devices have greatly increased concerns about malfunctions, deterioration of performance, safety accidents, etc. There are two models of analysis. Case A is symmetrical about one axis of rotation. Case B has two axes of rotation. In this study, a flow analysis was conducted to find excellent flow conditions in the mixing process to develop a paint with excellent electromagnetic shielding and thermal insulation performance. The results of the flow analysis are reflected in manufacturing specifications and are intended to be used to develop high-quality systems.
The MLCC electronic materials are used to make many industrial parts, for instance, such as smart phone, radio, LCD TV and so on. The screen ways and the rotor ways are known as methods that form electrode in MLCC. In these days, rotor ways have been frequently utilized because of its stability of quality. In this study, mixing characteristics for the inside of barrel of planetary mixer driver were investigated by numerical analysis using k-ε model of unsteady state, including effects for rotation and revolution. As the results, it showed that the flow of radius direction was mixed with regular pattern depending on time, however, the flow of longitudinal direction was mixed with same pattern regardless of time.
The basis of the cobalt demand analysis by use was established via the investigation and analysis of the cobalt materials flow, and the overall cobalt metal material and parts industry structure in Korea was examined to determine the cobalt material flow. The markets of the cobalt material for machinery were studied, including their interrelations, via market and study trends, and relevant plans were examined. The results of the study indicated that the advanced core technology for advanced industry and technology-intensive industry development is required to structurally innovate the parts materials and basic materials industries and to upgrade the catch-up industry structure to the new frontier structure.
In this study, the tendency of flow characteristics according to the mixing design of mortar and mortar standard reference materials was analyzed based on the constituents of the standard reference materials for mortar. As a result, the plastic viscosity of the mortar tends to be maintained according to the amount of fine aggregate, while the yield value tends to increase greatly. On the other hand, in the case of the standard reference materials for mortar, the plastic viscosity tends to increase largely according to the amount of fine aggregate substitutes, while the yield value tends to be almost maintained.
This study is a basic research for the development of composite materials for 3D printing and evaluated the rheological properties according to the blending design of the constituent materials. As a result, as the W/B ratio becomes smaller, the plastic viscosity value and the yield value tend to increase. Next, the plasticity and flow characteristics were differently derived depending on the binders used, and all the binders were considered to have more influence on the yield value than the plastic viscosity value.
The purpose of this study is to analysis the materials flow of steel cans from producing to discarding, finding problems in materials flow diagram in performance recycling of steel cans, and improvement ways for relevant systems and policies. Through supply various statics in KECO, it was found that the amount of steel calculated in Korea is 80,555 thousand tons. This amounts is reused from steel scrap of 35,143 thousand tons. After that producing steel was manufactured to steel plate, and manufactured steel plate produced steel cans of 273 thousand tons. The steel cans of 103.2 thousand tons was released in Korea. The 89.5 thousand tons of wastes for recycling was 86.8% for total of 103.2 thousand tons for recycling. The amount of recycling was assumed that there is no loss in collection, sorting and packing stage. According to such studies, a materials flow diagram was drafted and the problems in recycling for each stage were reviewed. In consequence plan to improve consist of materials and structure in cans in production stage, plans to restrict inclusion of foreign particles in discardment and selection section, plan to provide different support in funding and granting quality ratings in the sorting and compression section was suggested.
The purpose of this study is to identify the materials flow of aluminum cans from its production, manufacturing, distribution, consumption to its discarding, while finding problems in the materials flow diagram in carrying out recycling, and to present improvement measures for relevant systems and policies. Through various statistics, it was found that the actual amount of aluminum ingots distributed in Korea is 1,808,597 tons. From this 381,802 tons of aluminum plates were used for domestic uses, 75,070 tons were used to produce cans, and it was found that 50,073 tons of can products were produced and distributed in Korea. The 50,073 tons of wastes for separate collection was 96% and recycling was 76% for a total of 38,297 tons for recycling. Upon examining the recycling path, it was found that can-to-can was 35% equivalent to 13,403 tons, while 14,100 tons were melted for alloys and 10,794 tons were used as deoxidizing agents for blast furnaces. According to such studies, a materials flow diagram was drafted and the problems in recycling for each stage were reviewed. In result, plans to improve packaging materials and structures in the production stage, plans to restrict inclusion of foreign particles in the discard and selection stage, plans to provide different support in funding and granting quality ratings in the sorting and compression stages, and plans to apply as recycling designated business systems for high-value recycling in the resourcing stage were proposed.