폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF) 기반의 중공사막은 뛰어난 열적, 기계적, 화학적 안정 성을 통해 분리 응용을 위한 유연한 플랫폼을 제공한다. 본 총설에서는 PVDF 중공사막의 생산 및 표면 처리 기술의 최신 발 전과, 이를 담수화 및 염료/염 분리 공정에 적용한 사례를 검토하였다. 딥 코팅 기술과 화학적 접목, 그리고 TiO2, MXene, MoS2와 같은 나노소재를 혼합층 형성을 통해 첨가하는 것은 소수성, 습윤 방지 성능 및 투과성에서 뚜렷한 향상을 가져왔으 며, 야누스 트라이보어 및 이중층 막은 막 증류 공정을 장기간 수행할 때 내오염 저항성과 기계적 강도에서 우수한 성능을 보였다. 그리고 혼합 매트릭스 막에서 MOF와 rGO 같은 탄소 기반 충전재를 결합하면 높은 염 거부 수준(> 99.9%)과 물 유 속(> 25 kg/m2·h)을 달성하여 해수 및 산업 폐수 처리에 적합하였다. 본 총설에서는 투과증발, 나노여과, 진공 막 증류 (vacuum membrane distillation, VMD) 방법이 PVDF 막과 어떻게 시너지 효과를 발휘하는지를 검토하였으며, 첨가제 최적화 및 표면 기능화와 함께 막 구조를 설계함으로써 막 성능을 향상시킬 수 있으며 이를 통해 PVDF 중공사막이 실험실 규모의 연구에서 산업 규모 생산으로 확장될 수 있음을 보였다.
분리막 기반 이산화탄소(CO2) 포집 기술은 에너지 효율이 높고, 공정이 단순하며 모듈화가 가능하다는 장점으로 인해 다양한 산업 공정에서 주목받고 있는 차세대 탄소 저감 기술이다. 본 논문에서는 발전소, 시멘트 생산, 철강 제조, 바이 오가스 업그레이딩 등 주요 산업 공정에서의 CO2 포집 기술을 중심으로, 관련 분리막 소재, 공정 구성 방식을 포함한 실제 산업 응용 사례를 체계적으로 정리하였다. 특히 산업별 배출가스 조성, 운전 조건, 적용된 분리막의 특성과 성능을 비교⋅분 석하고, 시뮬레이션 연구 및 파일럿 규모의 실증 데이터를 바탕으로 분리막 공정의 성능과 한계를 다각적으로 평가하였다. 또 한 각 산업에서의 공정 조건에 따른 분리 전략과 적용 가능성을 제시함으로써, 분리막 기반 CO2 포집 기술의 현재 기술 수준 과 더불어 향후 상용화를 위한 과제 및 공정 최적화 방향에 대한 실용적 시사점을 도출하였다.
The cost of treating water purification plant water treatment residuals is high, with a low recovery rate and unstable effluent water quality, particularly in plants using lake and reservoir water sources in severe cold regions. Maximizing water resource utilization requires integrating water treatment residuals concentration and treatment effectively. Here, ceramic membrane technology was employed to separate supernatant and substrate after pretreatment. Optimal settling was achieved using 75 μm magnetic powder at 200 and 4 mg/L of nonionic polyacrylamide co-injection. Approximately 65% of the separated supernatant was processed by 0.1–0.2 μm Al2O3 ceramic membranes, yielding a membrane flux of 50 L/m2h and a water recovery rate of 99.8%. This resulted in removal rates of 99.3% for turbidity, 98.2% for color, and 87.7% for color and permanganate index (chemical oxygen demand, COD). Furthermore, 35% of the separated substrate underwent treatment with 0.1–0.2 μm mixed ceramic membranes of Al2O3 and SiC, achieving a membrane flux of 40 L/m2h and a water recovery rate of 73.8%. The removal rates for turbidity, color, and COD were 99.9%, 99.9%, and 82%, respectively. Overall, this process enables comprehensive concentration and treatment integration, achieving a water recovery rate of 90.7% with safe and stable effluent water quality.