검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        3.
        2023.11 구독 인증기관·개인회원 무료
        Noble metal phase, present in used fuel, are fission products that can be found as metallic precipitates in used nuclear fuel. They exist as small particles (nm~um) in grain boundaries of the used fuels. Since they are particles deposited between the grain structures, they can be considered as defects in the pellet structure. Thermal expansion of fuels with noble metal is slightly higher than that of bare fuels. The fuels at high temperature, such as immediately after being discharged from nuclear reactors, may be subject to fuel failure if sufficient cooling is not provided. Recent research has shown that the noble metals can migrate into the rim space between the pellet and the cladding, and be deposited in the inner layer of the claddings. therefore, the mechanical integrity of the cladding can be degraded by noble metals, as well as the pellets. The concentration of the noble metal phase should be considered to evaluate the effect of the noble metals on the fuel integrity, after discharge from the reactors. SCALE/ORIGEN code was used to evaluate the noble metals in fuel assembly-scale, and the radial distribution in the fuel assembly. The radial distribution of the reactor power was derived from the SCALE/TRITON, considering Westinghouse 17×17. Square cell model was chosen for the geometry and 1/4 model was applied to reduce the computation time.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Noble metal precipitates are fission products that can be found as metallic alloys in used nuclear fuel. They do not exist homogenously inside the fuel pellets, but exists in grain boundaries in the form of immiscible particles. The first drawback that comes because they exist in grain boundaries is the degradation of mechanical integrity. The particles in the grain boundaries can be considered as defect n solid solution of uranium oxide pellets, and they can change the lattice volume. Therefore, it is known that it can cause stress corrosion cracking of fuel pellets. Furthermore, there is a negative effect from the perspective of used fuel management. However, they also have a positive effect on used fuel management. Since the noble metal has galvanic reduction effect, the particles serve as an oxidation inhibitor for uranium. There are many other effects regarding to the noble metal precipitates. However, in any case, quantifying the particles is important in order to quantitatively analyze these effects from the perspective of used fuel management. SCALE/TRITON code was applied to calculate the noble metal isotopes including Mo, Tc, Ru, Rh and Pd. In order to calculate the distribution inside the pin, the multiregion cell model was selected. In particular, a cylindrical geometry was used, and the pellet was divided into several layers. In addition, coolant and cladding surrounded the pellet. Finally, the radial distribution was evaluated using the computational code, along with neutron flux map.
        5.
        2023.05 구독 인증기관·개인회원 무료
        When the recycling technology of spent nuclear fuels (SNF) for future nuclear reactor systems and the treatment technology of SNF for disposing of in a disposal site use a molten salt such as LiCl-KCl eutectic as a processing medium one of the essential unit processes is a distillation process that remove the salt component mixed with fission products recovered. Especially, in case of Pyro-SFR recycling system the recovered nuclear fuel materials such as U, TRU and some of rare earths come from main three processes (electro-refining, electro-winning, and drawdown processes) for recycling of SNF. These recovered fuel materials contain large portion of molten salt or liquid cadmium which requires removal of them by distillation. In spent nuclear fuels discharged from PWR the portion of composing element is as follows. Uranium is about 95%, other actinides such as transuranic elements (TRU; Np, Pu, Am, Cm) is about 1%, the rare earths (lanthanides) is about 1%, and the other elements is about 3%. For example, americium (Am) in the recovered fuel materials has a problem that the reported loss of Am inevitably occurs during the vacuum salt distillation operation. A new segregation method of AMM (actinide metal mixture)–salt system is based on the difference in melting point of the actinide elements. It is possible to apply this segregation method to recovering other actinides from AMM with accompanied salt because of relatively large amount and lower melting point of a specific element in other actinides avoiding vacuum salt distillation. This new segregation method successfully tested using a surrogate element such as aluminum due to its similar melting point with a specific element. The segregation principle is solid-liquid separation, thus the solidified actinides mixture ingot can take out of a molten salt medium.
        6.
        2023.05 구독 인증기관·개인회원 무료
        As regulations on carbon emissions increase, the interest in renewable energy is also increasing. However, the efficiency of renewable energy generation is highly low and has limitations in replacing existing energy consumption. In terms of this view, nuclear power generation is highlighted because it has the advantage of not emitting carbon. And accordingly, the amount of spent nuclear fuel is going to increase naturally in the future. Therefore, it will be important to obtain the reliability of containers for transporting safely and storing spent nuclear fuel. In this study, a method for verifying the integrity and airtightness of a metal cask for the safe transportation and storage of spent nuclear fuel was studied. Non-destructive testing, thermal stability, leakage stability, and neutron shielding were demonstrated, and as a result, suitable quality for loading spent nuclear fuel could be obtained. Furthermore, it is meaningful in that it has secured manufacturing technology that can be directly applied to industrial field by verifying actual products.
        7.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ammonia is considered a promising hydrogen carrier due to its high hydrogen density and liquefaction temperature. Considering that the energy efficiency generally decreases as chemical conversion is repeated, it is more efficient to directly use ammonia as a fuel for fuel cells. However, catalysts in direct ammonia fuel cells have the critical issues of sluggish ammonia oxidation reaction (AOR) rate and poisoning of reaction intermediates. In particular, the use of precious metal as cathodic catalysts has been limited due to ammonia crossover and poisoning. In this study, we introduce Fe-based single-atom catalysts with selective activity for the oxygen reduction reaction (ORR) even in the presence of ammonia. As the Fe content increased, the single-atom structure of the catalysts changed into Fe nanoparticles or carbides. Among our Fe–N–C catalysts, FeNC-50 with a Fe loading amount of 0.34 wt% showed the highest ORR performance regardless of the ammonia concentration. In particular, the difference in activity between the catalysts increased as the concentration increased. The FeNC-50 catalyst showed remarkable stability after 1000 cycles. Therefore, we believe that single-atom dispersion is an important factor in the development of stable non-precious catalysts with high activity and inactivity for the ORR and AOR, respectively.
        4,000원
        8.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300oC for 1 h and 400oC for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300oC for 1 h), and 167.0 Hv (400oC for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
        4,000원
        9.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 μm, and the surface fluctuation is measured as approximately 3.2 μm. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.
        4,000원
        12.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.
        4,000원
        18.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        최근 국내 원전의 경수로 사용후핵연료 습식 저장시설의 포화시점이 다가옴에 따라 운반 및 저장용기를 이용한 건식저장시스템 개발이 활발하게 수행되고 있다. 일반적으로 사용후핵연료 운반 및 저장용기 설계를 위한 차폐해석 시 장전 가능 연료 중 가장 보수적인 연료를 설계기준연료로 선정하여 해석을 수행한다. 그러나 실제 금속 운반용기에 장전되는 사용후핵연료 는 해석평가에 적용된 설계기준연료에 한정되지 않고 다양하기 때문에 초기농축도, 연소도, 최소냉각기간의 특성을 고려한 차폐평가를 통하여 장전가능 여부가 결정된다. 이에 본 연구에서는 금속 겸용용기에 장전 가능한 연료를 대상으로 국내 운반기준을 만족하는 최소냉각기간의 결정을 위한 차폐해석 방법을 기술하였다. 특히 발생량이 많은 초기농축도 3.0~4.5wt% 의 사용후핵연료는 차폐해석 구간을 세분화하여 평가하여 연구결과의 활용에 효율성을 높이고자 하였다. 차폐평가를 통해 2008년까지 국내 원전에서 발생한 장전대상연료 중 약 81%의 사용후 핵연료를 금속겸용용기로 운반할 수 있는것으로 평가 되었다. 본 연구결과를 통해 금속 겸용용기의 운반조건에 장전 가능한 연료의 특성을 제시함으로써 운반 시 운영절차의 개 발을 위한 기술적 근거 수립에 도움이 되고자 한다.
        4,300원
        19.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        인양장비는 원자력발전소에서 발생하는 사용후핵연료를 운반하는 운반용기를 인양하기 위해 사용된다. 본 연구는 원자력 안전위원회고시 제2013-27호와 미국 10CFR Part 71 §71.45에서 규정하는 기술수준에 따라 이론적인 방법과 유한요소방법 으로 인양장비의 구조적안전성을 평가하였다. 이론적으로 평가한 결과 모든 구성 요소에서의 응력이 응력제한치 내에 있어 운영상 발생하는 구조적 안전성을 확보하고 있는 것으로 판단하였다. 또한 유한요소해석을 통한 평가결과, 항복과 극한조건 모두에서 설계기준을 만족하는 것으로 평가되었다. 모든 구성요소에서 충분한 안전여유도(항복조건에서 3 이상의 안전율, 극한조건에서 5 이상의 안전율)를 갖는 것으로 나타나 구조적으로 안전하다고 판단하였다.
        4,900원
        20.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 선박 연료유는 고점도화 되고 슬러지분이 증가되고 있는 추세이며, 선박에서 발생한 슬러지의 처리 및 보일러 연료유로의 재활용 방안 등에 대해서 많은 연구가 수행되고 있다. 이러한 연구 중 특히 슬러지를 미립화하여 분쇄하기 위한 초음파 유화기는 가장 현실성 있는 재활용 장치로 알려져 있다. 이러한 관점에서, 이 연구는 초음파 유화기 개발에 대한 기초연구로서 슬러지의 유온과 유압이 따른 여과효율을 조사하였다. 실험결과는 보일러 인젝터에 슬러지를 분사할 경우 적절한 온도와 압력을 결정하거나, 또한 초음파 유화기에 의한 실험결과와 비교할 수 있는 자료로 활용될 수 있다. 아울러 유온과 유압의 영향에 따라 분쇄된 슬러지 입자의 여과효율 등을 연구하는데 있어서 기초자료로 활용될 수 있을 것이며, 궁극적으로 선박에서 발생한 슬러지를 자체 처리하여 보일러의 연료유로 사용함으로써 해양유류오염을 방지하는데 기여할 수 있을 것이다.
        4,000원
        1 2