Organic wastewater generated from polyester manufacturing processes was selected from H company to investigate the feasibility of anaerobic digestion that produces gases including methane. Bio Methane Potential (BMP) tests were conducted to measure the gas production and methane concentration for 7 process wastewater and 2 kinds of sludges from the H company. Also, along with monitoring pH and alkalinity during the anaerobic digestion process, the concentrations of COD and 1,4-dioxane were measured with 4 different operating conditions for N Emulsion (NE) and Ethylene Glycol (EG) wastewater. The BMP tests showed that 65% of methane was produced from NE and EG wastewater. This suggests that the organic wastewater from H company can be effectively treated by an anaerobic digester by which more than 90% of COD was removed.
Biochemical methane potential (BMP) of residual wastes from transesterification was tested to safely recycle carcass via rendering process. The carcass was obtained from a buried site for avian influenza (AI) infected poultry. Rendered lipid generated by a pilot-scale high-pressure rendering process was the main source of transesterification for biodiesel recovery. To test the feasibility of waste-to-energy approach for AI infected carcass, we compared the BMPs of various fractions of rendered materials from the carcass. BMP and specific methanogenic activity results indicate that transesterification waste shows better digestibility than that of rendered lipid, and the digestion performance was comparable to that of liquid residue. Biogas yields of glycerol, rendered lipids, and liquid residue were estimated as 0.11 L/g chemical oxygen demand (COD), 0.06 L/g COD, and 0.17 L/g COD, respectively. Regression analysis support that biogas production rate of glycerol (21 mL/g COD/d) was much faster than that of lipid (7 mL/g COD/d) while that of liquid residue was similar (24 mL/g COD/d). In summary using transesterification waste as a bioresource for bioenergy conversion can be a viable and sustainable option for the complete termination of burial site.
가축분뇨를 포함한 유기성폐기물의 직매립과 해양배출이 전면 금지되면서 바이오가스화는 유기성폐기물을 신재생에너지원으로 활용할 수 있는 대안으로 각광받고 있다. 가축분뇨의 국내 발생량은 2012년을 기준으로 173,052 m³/day 정도 발생하고 있으며, 전국 양돈장에서 발생되는 돈분뇨의 89.3%는 자원화(퇴비, 액비화), 9.7%는 위탁 처리하고 있다. 또한 국내에서 가축분뇨를 유기성폐기물로 활용하는 바이오가스화 시설은 평균 9.6 m³/ton의 바이오가스를 생산하고 있다. 이에 비하여 음식물류폐기물은 109.7 m³/ton, 음식물류폐기물 폐수(음폐수)는 40.9 m³/ton으로 가축분뇨가 현저히 적은 가스발생량을 보이고 있어 바이오가스화 효율 기준을 만족시키지 못하고 있는 실정이다. 본 연구에서는 돈분뇨의 발생원인 양돈장에 대한 유기물 성상분석 및 바이오가스 발생량을 산정하므로써 실제 바이오가스화시 발생될 수 있는 잠재적인 메탄수율을 도출하고자 한다. 현재 운영 중인 양돈장에서 사육되는 돼지의 생애주기별, 농가 구조 및 분뇨 수거 방식을 고려한 샘플링을 실시하였다. 총 7곳의 농가를 대상으로 현장조사를 수행하여 기본적인 이화학적 성상인 삼성분(수분, 가연분, 회분), 영양성분(탄수화물, 단백질, 지방), 원소분석(C, H, N, S), 질소(총질소, 암모니아성 질소) 등을 분석하여 농가에서 발생되는 돈분뇨의 잠재적인 메탄수율을 산정하였다.
This study was conducted to investigate the effects of different carbon sources on the anaerobic fermentation characteristics in the startup phase using the biochemical methane potential test. The treatments for this experiment were combinations of carbon sources (starch, cellulose, and xylan). Anaerobic fermentation was done at 37oC for 18 days with agitation and pH, ammonia nitrogen, volatile solids reduction, gas production, methane content, and methane production were investigated at 0, 1, 2, 3, 4, 5, 7, 9, 12, 15, and 18 days after incubation in triplicate. In the experiment, the pH was changed depending on the characteristics of the carbon source. The ammonia nitrogen concentration was the highest in the starch-treated group at 7, 12, and 15 days after incubation (P < 0.05). Cumulative volatile solids reduction was the highest in the cellulose-treated group at 18 day after incubation (P < 0.05) and cumulative gas production was higher in the cellulose-treated group than for other two treatments at 18 day after incubation (P < 0.05). Methane content was the lowest in the xylan-treated group at 18 days after incubation (P < 0.05). Cumulative methane production was higher in the xylan-and cellulose-treated group than in the starch-treated group at 18 days after incubation (P < 0.05). In this study, the carbon sources had significant effects on anaerobic fermentation characteristics; especially, the carbon source was shown to have a positive effect on the operation time and hydraulic retention time for the anaerobic digestion startup phage. Therefore, carbon sources should be considered systematically for efficient anaerobic digestion of organic waste.
In this study, the feasibility of the biogas production by anaerobic digestion with agricultural byproducts, which are stems and leaves of hot pepper or sweet pepper from one of the agricultural villages in South Korea, was investigated. The physico-chemical compositions of the agricultural byproducts of hot and sweet pepper were analyzed and they were found to be favorable with anaerobic digestion. Theoretical methane potentials of the test materials were estimated as 393.1 L CH4/kg VS for hot pepper and 372.6 L CH4/kg VS for sweet pepper. Biochemical methane potentials were analyzed by Biochemical Methane Potential (BMP) test and those of hot pepper and sweet pepper were 107.9 and 193.4 L CH4/kg VS, respectively. Silage was chosen to be long-term storage method for biogasification. Biochemical methane potential of hot pepper was increased by silage storage, while that of sweet pepper was decreased. In the case of silage chopping size, ensiled material with 30 mm size showed higher biochemical methane potential than that with 3 mm size. Most of test materials showed higher biochemical methane potentials with microbial additives containing Bacillus Circulans than that containing Bacillus Subtilis.
Needs for more accurate greenhouse gas (GHG) emission estimation are increasing to prepare for post-Kyoto protocol and emission trading starting from 2015 in Korea. Although GHG emission from landfill is relatively low, uncertainty of methane emissions from landfill is very high compared to the other sectors. Moreover, accurate estimation is needed to design landfill gas collection system and energy generation plant. In this paper, we investigated development methodologies of parameters comprising methane generation potential (L0) which is one of key parameters in methane emission estimation models. DOC included four steps including analysis of waste component, water content, organic carbon content, fossil carbon content. Instead of analysis of organic carbon content and fossil carbon content, biochemical analysis, measuring content of cellulose, hemicellulose, and lignin, is used in MELMod, landfill gas generation model in UK. Methodologies to develop DOCF has several methods including batch test, lysimeter test and test cell. They had difference in scale and similarity to landfill, but it is hard to consider the best method at the present stage. Preceding research on MCF is little. Lysimeter test and test cell can be the candidate to develop MCF, because of flexibility on test condition to characterize the structure of landfill sites. F is defined as fraction of methane in landfill gas. But by carbon flow and mass balance, F should represent fraction of methane in biogas generated by anaerobic decomposition. In this definition, F can be derived by same methods to that of DOCF.