In this article, to solve the problems about obsolescence of parts and unable to driving turret when internal components are failure, the DC-DC boost converter in the gun/turret drive system of mobile weapon was improved. The power converting circuit in converter is changed by applying the latest components, and the control circuit is changed from analog to digital. Also, the power converting circuits were modularized in three parallel so that it could be driven even when some components failed. The improved DC-DC boost converter secured stability such as converting to voltage in a linear manner in the entire section from the start of boosting to the end. Also, through the modular configuration, turret driving system can operates when some components failed.
지구온난화 문제에 대응하기 위해 온실가스 배출 저감을 위한 다양한 규제와 정책이 시행되고 있다. 이러한 배경 속에서 탄소중립을 목표로 하는 국가들이 늘어나고 있으며, 이에 따라 소형원자로모듈(Small Modular Reactor 이하 SMR)이 새로운 발전소 모델 로 주목받고 있다. SMR은 전통적인 대형 원자력 발전소 크기의 5~10% 수준이지만, 수백 메가와트(MW)급의 발전 용량을 갖춘 고효율 시스템이다. 이 발전소는 화석 연료 기반 발전소에 비해 탄소 발생을 줄일 수 있으며, 신재생에너지의 불안정한 에너지 공급을 보완할 수 있는 장점이 있다. 하지만, 원자력 발전소는 사고 시 방사선물질 누출의 위험성이 있어 주변 주민의 반대를 받아 왔다. 이러한 문제 를 해결하기 위해 부유식 소형 원자력 발전선이 주목받고 있다. 부유식 소형 원자력 발전소는 해양에 설치되어 부지확보, 인근 거주민 보상, 협의 과정이 간소화되고, 자연재해에 대한 안전성이 높다. 본 연구에서는 SMR 발전선의 파랑 중 예인 안정성을 평가 하였다. 해 상상태 3, 4, 5에서의 운동해석 결과, 해상상태 5 이하에서는 예인하여 목적지까지 이동하는데 필요한 내항성능 기준을 만족시킬 수 있 음을 확인하였다.
본 연구는 철도교 노후화에 따른 열차운행 중 신속 교체 및 재난·재해에 대한 급속 시공을 통하여 공기단축 및 시공성 확보로 국민의 사회적·경제적 피해를 최소화하고자 한다. 철도교 개량 등에서 필 수적인 8철도하로교 시공고도화 및 성능향상9을 위하여 신속 교체와 성능향상이 가능한 강합성 철도하 로교 설계·제작·시공 기술을 개발하고자 한다. 또한, 개발하고자 하는 강합성 하로교의 경우 철도교뿐 만 아니라 도로교에서 적용하고자 하며, 철도교는 상부구조가 단경간 형식으로 이루어지고 있어 철도 교 사용성 검토에 큰 문제가 없으나 도로교의 경우 바닥판 연속화를 고려 중에 있어, 이에 대한 온도 및 부모멘트 등 여러 문제점을 검토하였다. 상로교의 경우 다수의 거더에 의해 바닥판이 지지되므로 PS의 중요성이 부각될 수 없지만, 하로교의 바닥판은 양단 거더에 의한 고정지지이므로 RC구조 적용 이 어려워, 강합성 또는 PSC 공법을 일반적으로 적용한다. 기존 강합성 구조는 비용, 공기 측면에서 지양하고 PSC 구조의 가로보 및 바닥판과 강재 거더를 합성한 하로교를 개발하고자 한다.
The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.
Recently, as carbon-neutral energy sources become increasingly important worldwide, SMRs (Small Modular Reactors), which offer significantly enhanced safety, versatility, and mobility compared to conventional nuclear reactors, are gaining attention as a viable alternative. SMR generally refers to small modular reactors with a power output of 300 MWe or less. Unlike conventional reactors, SMRs are characterized by an all-in-one design where peripheral systems and equipment are all integrated into the reactor itself, leading to enhanced reliability and durability. Additionally, the nuclear fuel reloading cycle is significantly extended compared to traditional reactors, resulting in a substantial reduction in maintenance difficulty and costs. Researchers have taken note of these characteristics of SMRs, particularly the extended fuel reloading cycle. Therefore, we have initiated the initial design of an ultra-small Micro Modular Reactor with an electricity generation capacity of 10 MWe and a fuel cycle of up to 55 years, with the goal of using it as a propulsion power source for various transportation modes, especially ships. Our design of MMR, called ‘ARA,’ is primarily distinguished by its use of U233 and Th232 fuels instead of conventional UO2 fuel. Due to various features of ‘ARA,’ including different fuel compositions, ARA is predicted to exhibit several characteristic features compared to conventional PWRs. In this study, among these characteristics, we focused on predicting changes in material composition within the fuel rod during the extended cycle operation of high-enriched fuel, rather than short-cycle operation using low-enriched fuel, unlike conventional reactors. The primary goal of this research is to observe the behavior of the composition of the materials used in the fuel cycle of the MMR, which utilizes U233 and Th232 fuels instead of UO2. Considering the difficulties in the spent nuclear fuel disposal process, many different trials were made to minimize the fission products of ARA, which differs from conventional reactors in terms of fuel type, size, and fuel cycle, in relation to waste generation.
The process basket assembly is an important module in pyroprocess, because pyroprocess is a batch process, so process materials are contained in a basket assembly and transferred with the basket. The basket assembly is composed of upper and lower assembly. The lower assembly is a basket or crucible which contains process materials, and it can have electrodes. The upper assembly mainly consists of heat shields, a flange, and connectors for supplying currents to electrodes of the lower assembly. During the electrolytic recovery process, the lower part is submerged into molten salt, whose temperature is about 500°C at least and the heat from salt is transferred to the upper assembly. And the heat affects the performance or durability of parts on the top of equipment and can raise cell temperature, which is an undesired situation. In addition, the handling equipment can pick the assembly when it is hottest, and during the transfer, the gripped part is under thermal and mechanical stresses. Because of this, the thermal effects from the heat should be required during equipment design stage. In this study, the thermal analyses of process basket assembly were conducted for 3 cases: the steady state of the basket assembly when it submerged in molten salt, the thermal and mechanical stresses when gripped by remote handling device, and the temperature changes under natural convection. These analyses were performed using Solidworks with flow simulation package, and the results will apply to improve the thermal resistant performance of the basket assembly.
Modular construction is an economical and efficient construction that reduces time and costs by manufacturing units in factories and constructing them on site. Currently, the demand for modular construction is increasing not only abroad but also domestically. As the demand for modular construction increases, a lot of development and research on connections between modular units are being conducted. Connections between modular units should be quick and simple to assemble when assembling units on site, and should be in a form that allows each unit to be connected regardless of direction. In addition, it must be able to exert sufficient strength against external loads. In this study, a connection between modular units using connecting steel plates and bolts was proposed, and the nonlinear behavior of the connection to external lateral force was analyzed through finite element analysis, and resistance performance was evaluated.
Since SMR’s reduced reactor radius results in higher neutron leakage, SMR operates at a relatively lower discharge burnup level than traditional Light Water Reactors (LWRs). It may result in larger spent fuel amounts for SMRs. Furthermore, recent studies demonstrated that NuScale reactor will generate a significantly higher volume of low- and intermediate-level waste owing to components located near the active core including the core barrel and the neutron reflector. For spent nuclear fuel simulation, FRAPCON-4.0 was updated. Major modifications were made for fission and decay gas release, pellet swelling, cladding creep, axial temperature distribution, corrosion, and extended simulation time covering from steady-state to dry storage. In this study, typical 17×17 PWR fuel (60 MWd/kgU) and NuScale Power Module (36 MWd/kgU) was compared. NuFuel-HTP2™ fuel assembly, which has a half-length of proven LWR fuel, was employed. Owing to the lower discharge burnup and operating temperature, the maximum hydrogen pickup was 73 wppm and the maximum hoop stress was ~25 MPa. Therefore, hydride reorientation issue is irrelevant to SMR spent fuel. In this context, the current regulatory limit for dry storage (i.e. 400°C and 90 MPa) can be significantly alleviated for LWR-based SMRs. The increased safety margin for SMR spent fuel may compensate high spent fuel management cost of SMRs incurred by an increased amount. The comprehensive analysis on SMR spent fuel management implications are discussed based on simulated SMR fuel characteristics.
In addition to Korea, various countries such as the United States, the United Kingdom, France, and China are designing small module-type reactors. In particular, a small modular reactor is the power of 300 MWe or less, in which the main equipment constituting the nuclear reactor is integrated into a single container. Depending on the purpose, small modular reactors are being developed to help daily life such as power, heating supply, and seawater desalination, or for power supply such as icebreakers, nuclear submarines, and spacecraft propellants. Small modular reactors are classified according to form. It can be classified into light-water reactors/ pressurized light-water reactors based on technology proven in commercial reactors, and non-lightwater reactors based on fuel and coolant type such as Sodium-cooled Fast Reactor, High temperature gas-cooled reactor, Very high temperature reactor and Moltenn salt reactor. SMRs, which are designed for various purposes, have the biggest difference from commercial nuclear reactors. The size of SMRs is as small as 1/5 of that of the commercial reactors. Several modules may be installed to generate the same power as commercial reactors. Because of the individually operation for each module, load follow is possible. Also, The reactor can be cooled by natural convection because the size is small enough. It is manufactured as a module, the construction period can be reduced. Depending on the characteristics of these SMRs, application for safeguards is considered. There are many things to consider in terms of safeguards. Therefore, it is IAEA inspection or other approaches for SMRs installed and remotely operated in isolated areas, data integrity for remote monitoring equipment to prevent the diversion of nuclear materials, verification method and material accountancy and control for new fuel types and reactors. Since SMR is more compact and technical intensive, safeguards should be considered at the design stage so that safeguards can be efficiently and effectively implemented, which is called the Safeguards by design (SBD) in the IAEA. In this paper, according to the characteristics of SMR, we will analyze the advantages/disadvantages from the point of view of safeguards and explain what should be considered.
The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.
다양한 수종의 묘목을 고밀도로 심는 모듈군락식재가 기존의 성목식재보다 자연림 복원 효과성이 뛰어난지 알고자 야외 실험을 했다. 또 모듈군락식재의 식재밀도 차이에 따라 생장이 촉진되는지, 또 식피율이 높아지는지를 알아보았다. 큰나무를 넓게 띄어 심는 성목식재구(대조구)와 다종의 묘목을 고밀도로 심는 모듈군락식재구(처리구)로 구분했고, 다시 식재밀도에 따른 3주/㎡와 1주/㎡ 모듈군락식재구로 나눠 실험을 설계했다. 2019년 5월부터 26개월간 공시재료의 생존율, 생장량(수고, 수관폭, 근원직경), 식피율을 측정했고, 측정 수고값을 활용하여 장래 수고생장을 예측했다. 모듈 군락식재구의 생존율과 상대생장량이 성목식재구보다 높았다. 모듈군락식재구의 식피율은 23개월 이전에 지표면을 완전히 덮었지만, 성목식재구는 이식스트레스로 인해 오히려 식피율이 낮아졌다. 고밀도로 심은 모듈군락식재구의 묘목이 자라서 식재 후 5∼6.5년 만에 성목식재구보다 더 높이 자랄 것으로 예측됐다. 이런 결과를 이끈 원인은 다종(多 種)·묘목·고밀도 식재와 토양개량·멀칭 등의 식재기반 개선 때문이라 본다. 즉, 모듈군락식재구에 심은 묘목은 큰나무를 심은 성목식재구보다 식재 후 환경 적응력이 뛰어나 생존율이 높고, 초기 생장량이 많았을 것이다. 다양한 자생수종의 고밀도 혼식은 상호보완적 환경압을 완화하는 동시에 개체간 경쟁을 유발해 생장 촉진을 이끌었다. 더불어, 식재기반 개선은 묘목의 활착율 상승과 생장량 증가에 유효했다고 본다. 식재밀도가 높을수록 식피율이 급격히 늘어나, 제초 등의 사후관리비 절감 효과가 있을 것이다. 모듈군락식재구(3주/㎡, 1주/㎡)의 식재밀도가 높았을 때 수고생장이 촉진되 었고, 수관폭·근원직경은 식재밀도가 낮았을 때 높아지는 경향을 보였지만, 통계적 차이가 없었다.