검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        4.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The economical manufacturing of high-quality graphene has been a significant challenge in its large-scale application. Previously, we used molten Sn and Cu as the heat-transfer agent to produce multilayer graphene on the surface of gas bubbles in a bubble column. However, element Sn and Cu have poor catalytic activity toward methane pyrolysis. To further improve the yield of graphene, we have added active Ni into Sn to construct a Sn–Ni alloy in this work. The results show that Sn–Ni alloy is much more active for methane pyrolysis, and thus more graphene is obtained. However, the graphene product is more defective and thicker because of the faster growth rate. By using 300 ml molten Sn–Ni alloy (70 mm height) and 500 sccm source gas ( CH4:Ar = 1:9), this approach produces graphene with a rate of 0.61 g/hr and a conversion rate of methane to carbon of 37.9% at 1250 ℃ and ambient pressure. The resulting graphene has an average atom layer number of 22, a crumpled structure and good electrical conductivity.
        4,000원
        5.
        2024.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-frequency soft magnetic Ni, Fe, and Co-based thin films have been developed, typically as nanocrystals and amorphous alloys. These Ni, Fe, and Co-based thin films exhibit remarkably good frequency dependence up to high frequencies of several tens of MHz. These properties arise from the moderate magnetic anisotropy and fairly high electrical resistivity that result from the microstructural characteristics of the nanocrystalline and amorphous states. In this paper, Al-Co/AlN-Co and Al-N/AlN-Co multilayer films were deposited using two-facing-target type sputtering (TFTS). Their microstructures, magnetic and electrical properties were studied with the expectation that inserting Al-Co or Al-N as an interlayer could effectively reduce the coercive force and produce films with relatively high resistivity. A new approach is presented for the fabrication of Al-Co (Al-N)/AlN-Co multilayer films, prepared with the TFTS system. The deposited films were isothermally annealed at different temperatures and investigated for microstructure, magnetic properties and resistivity. The TFTS method used in this experiment is suitable for fabricating Al-Co(Al-N)/AlN-Co multilayer films with different layer thickness ratio (LTR). The annealing conditions, thickness of the multilayer film, and LTR can control the physical properties as well as the microstructure of the manufactured film. Magnetization and resistance increased and coercivity decreased as LTR decreased. The thin film with LTR = 0.175 exhibited high resistivity values of 2,500 μΩ-cm, magnetization of 360 emu/cm3, and coercivity of 5 Oe. Results suggests that thin films with such good resistivity and magnetization would be useful as high-density recording materials.
        4,000원
        12.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Essential macleod program (EMP) was used to optimize the transmittance of the transparent conducting layers in an oxidemetal- oxide structure. For EMP simulation, the optical coefficient of the material was extracted using an ellipsometer. Following the simulation studies, oxide-metal-oxide samples were fabricated experimentally, and their optical and electrical properties were analyzed. Multilayer SiInZnO/Ag/Siinzno (S/A/S) structures were grown on glass substrates using radio frequency (RF) and direct current (DC) sputtering at room temperature. Due to the occurrence of destructive interference at the metal and oxide interface, the S/A/S structure exhibited excellent optical properties. As the thickness of the top and bottom oxide layers was increased, the transmittance spectrum was red-shifted due to partial wave interference at the Ag interface. Change in thickness of the top oxide layer had a greater effect on the transmittance than that of the bottom oxide layer. This was due to the difference in refractive index occurring at each interface. Change in Ag thickness shifted the absorption edge in the short wavelength region. Whereas electrical properties, such as sheet resistance and carrier concentration, were found to be dependent on thickness of the sandwiched metal layer. An excellent figure of merit of 63.20 ×10−3Ω−1 was obtained when the thickness of the Ag layer was 11 nm, and the top and bottom oxide layer thickness were 45 and 60 nm, respectively. These values suggest promising optoelectronic properties and are encouraging for future transparent electrode applications.
        4,000원
        20.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption pro le was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption pro le is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model tting. We apply this updated MLSI to two sets of Hα and Ca ii line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We nd that the new version of the MLSI satisfactorily ts most of the observed line pro les of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral bril, an umbral feature, and a fast down ow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca ii 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.
        5,100원
        1 2 3 4