검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 μm by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.
        4,000원
        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자외선차단 화장품은 기능성 화장품 중의 하나로서, 유·무기 자외선차단물질이 함유되어 있다. 무기계 자외선차단제는 주로 산화아연, 이산화티탄 등이 있다. 무기계 자외선차단제는 입자의 지름이 60 ~ 100 nm로 자외선 A, B의 차단능이 좋은 것으로 알려져 있다. 또한 자외선을 포함한 태양광선에 대해 비활성이 크고 안전성이 우수하다. 그리고 유기계 자외선차단제처럼 피부에 흡수 또는 축적되지 않으므로 피부 자극이나 알레르기를 유발하지 않는다. 본 연구에서는 판상 무기안료인 마이카, 자외선차단 효과를 갖는 이산화티탄 나노입자, 소수성 실리카를 각각 계면활성제로 표면처리 하였고, 각 물질의 전하 차이에 따른 비화학적인 상호 인력 작용에 의해 마이카에 이산화티탄 나노입자, 실리카를 물리적으로 흡착시켰다. 이후, 소수성 표면처리제인 실란을 표면처리 하여 소수성을 갖는 자외선 차단 판상 마이카 복합체를 제조하였다. 자외선 차단 판상 마이카 복합체는 일반적인 나노입자 이산화티탄의 응집성을 개선하고 균일한 분산에 따른 자외선차단 효과가 증대되었으며, 소수성으로 표면처리를 하여 화장품 제형에서의 분산안정성을 크게 개선할 수 있었다. 안료의 표면전하는 제타전위로 평가하였으며, 제조된 자외선차단 마이카 복합체의 특성 평가는 FE-SEM, XRD, FT-IR, UV-VIS 등으로 확인하였다.
        4,000원
        3.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the TiO2 layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with 0.45 cm2 active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the TiO2 layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the TiO2 layer was determined to be an effective method for improving the ECE of a DSSC.
        4,000원
        4.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pt has been widely used as catalyst for fuel cell and exhausted gas clean systems due to its high catalytic activity.Recently, there have been researches on fabricating composite materials of Pt as a method of reducing the amount of Pt due toits high price. One of the approaches for saving Pt used as catalyst is a core shell structure consisting of Pt layer on the core ofthe non-noble metal. In this study, the synthesis of Pt shell was conducted on the surface of TiO2 particle, a non-noble material,by applying ultraviolet (UV) irradiation. Anatase TiO2 particles with the average size of 20~30 nm were immersed in the eth-anol dissolved with Pt precursor of H2PtCl6·6H2O and exposed to UV irradiation with the wavelength of 365 nm. It was con-firmed that Pt nano-particles were formed on the surface of TiO2 particles by photochemical reduction of Pt ion from the solution.The morphology of the synthesized Pt@TiO2 nano-composite was examined by TEM (Transmission Electron Microscopy).
        4,000원
        5.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nano-technology is a super microscopic technology to deal with structures of 100 nm or smaller. This technology also involves the developing of TiO2 materials or TiO2 devices within that size. The aim of the present paper is to synthesize WOx doped nano-TiO2 by the Sonochemistry method and to evaluate the effect of different percentages (0.5-5 wt%) of tungsten oxide load on TiO2 in methylene blue (MB) elimination. The samples were characterized using such different techniques as X-ray diffraction (XRD), TEM, SEM, and UV-VIS absorption spectra. The photo-catalytic activity of tungsten oxide doped TiO2 was evaluated through the elimination of methylene blue using UV-irradiation (315-400nm). The best result was found with 5 wt% WOx doped TiO2. It has been confirmed that WOx-TiO2 could be excited by visible light (E<3.2 eV) and that the recombination rate of electrons/holes in WOx-TiO2 declined due to the existence of WOx doped in TiO2.
        4,000원
        6.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The compaction response of nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered . But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and , respectively
        4,000원
        7.
        2009.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop TiO2 materials and TiO2 devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create TiO2 nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. TiO2 powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.
        4,000원
        8.
        2008.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We fabricated 10 nm-TiO2 thin films for DSSC (dye sensitized solar cell) electrode application using ALD (atomic layer deposition) method at the low temperatures of 150˚ and 250˚. We characterized the crosssectional microstructure, phase, chemical binding energy, and absorption of the TiO2 using TEM, HRXRD, XPS, and UV-VIS-NIR, respectively. TEM analysis showed a 10 nm-thick flat and uniform TiO2 thin film regardless of the deposition temperatures. Through XPS analysis, it was found that the stoichiometric TiO2 phase was formed and confirmed by measuring main characteristic peaks of Ti 2p1, Ti 2p3, and O 1s indicating the binding energy status. Through UV-VIS-NIR analysis, ALD-TiO2 thin films were found to have a band gap of 3.4 eV resulting in the absorption edges at 360 nm, while the conventional TiO2 films had a band gap of 3.0 eV (rutile)~3.2 eV (anatase) with the absorption edges at 380 nm and 410 nm. Our results implied that the newly proposed nano-thick TiO2 film using an ALD process at 150˚ had almost the same properties as thsose of film at 250˚. Therefore, we confirmed that the ALD-processed TiO2 thin film with nano-thickness formed at low temperatures might be suitable for the electrode process of flexible devices.
        4,000원
        9.
        2008.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of TiO2 bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and TiO2 nano powder for the compaction of TiO2 nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.
        4,000원
        10.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, imbedded composite powders have been successfully prepared from the (Cu. Zn)/ composite salt solution. The composite (Cu, Zn)/ powders were formed by drying the solution at 200~ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting the decomposition ratio of aniline blue with UV-visible spectrophotometer(Shimazu Co., UV-1601). Phase analysis of (Cu, Zn)/ composite powders was carried out by XRD and DSC, and powder size was measured with TEM. The mean particle size of composite powders was about 100mm. As the reduction temperature increases, a few zinc sulfide and oxide phases was formed and copper oxide phase was reduced. The decomposition ratio of aniline blue was about 80% under the UV irradiation by the TiO phase in the composite (Cu, Zn)/ powders and similar decomposition ratio of 80% was obtained at the UV lightless condition by virtue of Cu and Zn compounds.
        4,000원
        11.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, imbedded copper matrix powders have been successfully prepared from the () composite salt solution. The composite powders were formed by drying the solution at 200~40 in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite powders under the UV irradiation for 8 hours
        4,000원
        13.
        2019.10 서비스 종료(열람 제한)
        The purpose of this experimental study is to chloride ion penetration resistance performance of concrete using Nano-TiO2 Carrier. As a result, concrete using Nano-TiO2 Carrier was confirmed to be superior than ordinary concrete and commercial TiO2 concrete chloride ion penetration resistance performance.
        14.
        2018.04 서비스 종료(열람 제한)
        The purpose of this experimental study is to investigate the influence of chemical resistance of porous concrete using high performance nano TiO2 Carrier. As a result, porous concrete using high performance nano TiO2 Carrier was confirmed to be superior than ordinary concrete and TiO2 concrete chemical resistance.
        15.
        2017.04 서비스 종료(열람 제한)
        The purpose of this experimental study is to investigate the application of materials of construction with MWNT and TiO2. high performance nano MWNT-TiO2 carrier was fabricated by sol-gel method and performance analyzed by XRD and SEM. As a result, high performance nano MWNT-TiO2 carrier was no significant differences in coating state, crystallinity and microstructure.
        16.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        The purpose of this experimental study is to investigate the application of materials of construction with MWNT and TiO2. high performance nano MWNT-TiO2 carrier was fabricated by sol-gel method and performance analyzed by XRD and SEM. As a result, high performance nano MWNT-TiO2 carrier was no significant differences in coating state, crystallinity and microstructure.