Recently, an unprecedented emerging infectious disease has rapidly spread, causing a global shortage of wards. Although various temporary beds have appeared, the supply of wards specializing in infectious diseases is required. Negative pressure isolation wards should maintain their function even after an earthquake. However, the current seismic design standards do not guarantee the negative pressure isolation wards’ operational (OP) performance level. For this reason, some are not included in the design target even though they are non-structural elements that require seismic design. Also, the details of non-structural elements are usually determined during the construction phase. It is often necessary to complete the stability review and reinforcement design for non-structural elements within a short period. Against this background, enhanced performance objectives were set to guarantee the OP non-structural performance level, and a computerized tool was developed to quickly perform the seismic design of non-structural elements in the negative pressure isolation wards. This study created a spreadsheet-based computer tool that reflects the components, installation spacing, and design procedures of non-structural elements. Seismic performance review and design of the example non-structural elements were conducted using the computerized tool. The strength of some components was not sufficient, and it was reinforced. As a result, the time and effort required for strength evaluation, displacement evaluation, and reinforcement design were reduced through computerized tools.
The purpose of the study was to investigate the immediate effects of negative pressure soft tissue therapy on muscle tone, muscle stiffness and balance in patients with stroke. In total, 20 patients with stroke and assigned to the negative pressure soft tissue therapy group (NPST, n=10) or, placebo-negative pressure soft tissue therapy group(Placebo-NPST, n=10). Both groups underwent NPST or placebo-NPST once a day during the experimental period. MyotonPRO was used to assess the parameters for muscle tone and stiffness. Biorescue was used to assess the parameters for balance. Each group showed improvements in muscle tone, muscle stiffness, and balance ability (p<.05). Especially, Muscle tone, muscle stiffness, and anterior length in the limit of stability were the significant improvement on NPST group (p<.05). The results of the study suggest that the NPST is effective in improving muscle tone, muscle stiffness, and balance ability in patients with stroke.
가스폭발은 해양플랜트 산업에서 발생할 수 있는 치명적인 사고 중 하나이며, 탑사이드 플랫폼은 폭발압력에 따른 구조건전성을 확보해야만 한다. 따라서, 해양플랜트 분야에서는 이러한 폭발사고에 대비한 방폭설계에 관한 많은 연구가 수행되었지만, 여전히 추가적으로 세밀한 분석이 더 필요한 실정이다. 폭발 설계하중 계산과정에서 도출된 충격량은 CFD 해석결과로 계측된 폭발 압력 응답에서의 곡선 아래 면적의 절대 값에 의해 결정되어 진다. 하지만 가스폭발에서의 부압구간은 TNT 폭발이나 가스폭발과는 달리 상당부분 존재한다. 본 연구의 목표는 이러한 부압구간이 구조물의 거동에 미치는 영향에 대해서 분석하는 것이다. 따라서 방폭설계가 필수적으로 요구되어지는 FPSO 탑사이드의 방화벽을 폭발하중에 따른 구조응답을 분석하기 위한 대상물로 선정하였다. 폭발 하중-시간이력 데이터는 FLACS를 이용한 폭발 시뮬레이션 과정을 통해 획득하였으며, LS-DYNA는 비선형 과도 응답해석을 위해 사용되었다.
In this study, we modeled a ship or marine structure into a rectangular resistance body and tried to examine surrounding flow characteristics and pressure distributions behind the resistance body experimentally and investigated pressure characteristics by a 3-dimension numerical simulation. As a result, the reattachment point of the mainstream separated from the upper part and proceeding to the rear part was about x/H=6, but by the influence of the negative pressure area formed behind the resistance body and interference of the flow flowed in winding from left and right, the reattachment point of some flows was formed near x/H=1.33. The perpendicular velocity component behind x/H=0 varies in size with the recycle flow shapes formed from the influence of the resistance body, but generally it shows a negative distribution and there is a decreasing pattern as it goes to the down part. We verified the result of the calculation by comparing the velocity distribution of 3-dimension numerical simulation using a commercial software and the PIV(particle image velocimetry) measurements. In the numerical simulation results, the static pressure characteristic behind the resistance body was proportional to the inflow velocity, and the dynamic pressure shows a similar pattern with constant-velocity from the experiment.
Acute upper airway obstruction can cause negative pressure pulmonary edema (NPPE). It is a well-known perianesthetic complication, but is uncommon for intubated patients. Radiation injury of lung can easily lead to pulmonary hemorrhage or NPPE caused by changes of transthoracic or transpulmonary pressure. It is due to injury of alveolar-capillary membrane by radiation. We report the case of a 71-year-old man with a history of radiation therapy for lung cancer after surgical resection who developed the abrupt onset of pulmonary hemorrhage and NPPE during general anesthesia for hydrocele and inguinal hernia operation.