전 세계적으로 RNA 간섭(RNA interference, RNAi)을 활용한 해충방제제 연구가 활발히 진행되고 있다. 대표적 으로 Monsanto의 서부 옥수수 뿌리벌레(Diabrotica virgifera virgifera) 특이적 방제용 dsRNA (DvSNF7)를 발현하 는 옥수수 종자가 상용화 되었고, 2016년 이 종자가 국내 사료 및 식품용으로 수입이 승인 되었다. 본 연구는 국내 에 서식하는 좁은가슴잎벌레(Phaedon brassicae)를 Non-target 곤충으로 사용하여, 옥수수 종자에 사용된 DvSNF7 dsRNA의 잠재적 위해성을 평가했다. P. brassicae의 SNF7 유전자와 DvSNF7 dsRNA 간 Sequence유사성 을 확인했다. 다음으로 P. brassicae가 DvSNF7 dsRNA를 섭식할 수 있는 환경을 조성하여, 치사 효과 실험과 Sequence특이적인 Knockdown효과를 확인하였다. 그 결과, DvSNF7 dsRNA는 P. brassicae생존에 영향을 미치지 않았으며, P. brassicae의 SNF7유전자를 Knockdown시키지 않음을 확인했다. 이번 연구를 통해 D. virgifera virgifera와 같은 과인 P. brassicae 는 SNF7유전자 간 Sequence유사성이 있지만, Sequence특이성이 부족하여 생존과 유전자 발현에 영향을 주지 않음으로써 위해성이 낮음을 확인했다.
Metakaolin-based geopolymers have shown promise as suitable candidates for 14C immobilization and final disposal. It has been shown that the physicochemical properties of metakaolin wasteforms meet, and often far exceeding, the strict compression strength and leaching acceptance criteria of the South Korea radioactive waste disposal site. However, it is not possible to analyze and characterize the internal structure of the geopolymer wasteform by conventional characterization techniques such as microscopy without destruction of the wasteform; an impractical solution for inspecting wasteforms destined for final disposal. Internal inspection is important for ensuring wastes are homogenously mixed throughout the wasteform and that the wasteform itself does not pose any significant defects that may have formed either during formulation and curing or as a result of testing prior to final disposal. X-ray Computed Tomography (XCT) enables Non-Destructive Evaluation (NDE) of objects, such as final wasteforms, allowing for both their internal and external, characterization without destruction. However, for accurate quantification of an objects dimensions the spatial resolution (length and volume measures) must be know to a high degree of precision and accuracy. This often requires extensive knowledge of the equipment being used, its precise set-up, maintenance and calibration, as well as expert operation to yield the best results. A spatial resolution target consists of manufactured defects of uniformed dimensions and geometries which can be measured to a high degree of accuracy. Implementing the use of a spatial resolution target, the dimensions of which are known and certified independently, would allow for rapid dimensional calibration of XCT systems for the purpose of object metrology. However, for a spatial resolution target to be practical it should be made of the same material as the intended specimen, or at least exhibit comparable X-ray attenuation. In this study, attempts have been made to manufacture spatial resolution targets using geopolymer, silica glass, and alumina rods, as well as 3D printed materials with varying degrees of success. The metakaolin was activated by an alkaline activator KOH to from a geopolymer paste that was moulded into a cylinder (Diameter approx. 25 mm). The solidified geopolymer cylinder as well as both the silica glass rod and alumina rod (Diameter approx. 25 mm) we cut to approximately 4 mm ± 0.5 mm height with additional end caps cut measuring 17.5 mm ± 2.5 mm height. All parts were then polished to a high finish and visually inspected for their suitability as spatial resolution targets.
본 논문은 非目的语의 환경에서 베트남의 한어학습자들을 대상으로 하여, 지필 테스트(paperand- pencil test) 방식으로 그들의 한자 형방 인식의 발전 과정에 대한 연구를 진행하였다. 그 결과는 다음과 같다.
베트남 한어학습자들이 초·중급 단계에 있을 때 여전히 스스로 형방을 인식하지 못하였으나 고급 단계에 진입한 후 형방을 비교적 스스로 인식할 수 있게 되었다.
체계적인 한자 이론 지식 교육은 학습자들이 한자 형성자의 형방에 대한 인식과 그 발전에 도움이 되었다. 중국 유학생들과 비교 연구를 통하여 본 논문은 서로 다른 언어 학습 환경에서 학습자들이 형성자들을 인식하는 데 있어서도 서로 다른 발전 양상이 있음을 발견할 수 있었다.
In 2017, a total of 82 non-target species representing six orders of insects were captured in four types of tephritid fruit fly (Diptera: Tephritidae) surveillance traps located in Korea; the species included 6 families of Coleoptera, 1 of Dictyoptera, 17 of Diptera, 2 of Hemiptera, 3 of Hymenoptera, 1 of Neuroptera, 4 of Lepidoptera, and 1 of Raphidioptera. Of these, Diptera were the most abundant; the main families included Muscidae, Tephritidae, and Anthomyiidae. Herein, based on a survey, we present a list of the species of non-target insects captured in the tephritid fruit fly surveillance traps.
본 연구에서 국내에서 개발된 제초제저항성 GM 벼인 밀양 204호와 익산 483호가 비표적 곤충과 거미에 미치는 영향을 평가하였다. GM 벼와 non-GM 벼에 대한 보리수염진딧물과 벼멸구의 기주선호도에는 차이가 없었으며, GM 벼를 섭식한 벼멸구를 포식한 황산적거미의 체중 변화에도 통계적 유의성이 없었다. 밀양 204호와 그 대조 모본 non-GM 벼에서 서식한 벼멸구를 포식한 황산적거미의 생존율에는 차이가 없었 으나, 벼멸구를 통해 익산 483호에 노출된 황산적거미의 생존율은 대조 모본 non-GM 벼에 비해 통계적으로 낮은 생존율을 나타내었다. 또한 익 산 483호의 화분을 섭식한 꿀벌 유충은 밀양 204호와 다른 non-GM 벼 화분을 제공하였을 때 보다 현저하게 긴 용기간을 보였다. 농업생태계에 서 중요한 포식 천적인 황산적거미와 양봉 산업으로서 중요한 기능을 하는 꿀벌에 GM 벼가 부정적인 영향을 보임에 따라 국내에서 개발된 제초 제저항성 GM 벼의 농업 환경 노출 이전에 충분한 추가 연구와 안전성 평가가 선행되어야 할 것으로 사료된다.
Non-target predatory insects can be indirectly exposed to aerial pesticide spraying and fogging to control Monochmus beetles that transmit pine wood nematode, Bursaphelenchus xylophilus. We evaluated potential lethal or sublethal effects of thiacloprid on survival and behavior of a carpenter ant species, Camponotus japonicus Mayr. Field-collected ant colonies were directly exposed to several food items, such as thiacloprid-addicted Monochmus beetles, 10% sugar watered cotton balls contaminated by thiacloprid concentrations, and 10% sugar water. Dead beetle bodies caused no apparent adverse effect through dietary exposure in general, although a few ants were died with paralysis at colony level experiment. At individual level, most ant workers were died within 10 days compared to control group. In contrast, dietary exposure of ants to thiacloprid concentrations showed significant lethal effect with paralysis and impaired walking, especially at 10 and 50 mg/L thiacloprid concentrations. Some intoxicated ants recovered within a few days in 10 and 50 mg/L thiacloprid concentrations, but intoxicated ants were generally shown to be less responsible to enemy ants with low aggressive behavior. Implications for predicting hazards of thiacloprid to beneficial arthropods in pine forests are discussed.
본 논문은 생명공학기술을 통해 생산된 LM벼에 대한 비표적 생물체 중 곤충을 중심으로 한 환경위해성 평가방법을 제시하고자 작성하였다. 자료조사를 위해 농업 해충관련 도감 및 서적을 활용하였고 참고문헌과 환경위해성 평가 관련 홈페이지를 참조하였으며, 논문이나 벼와 관련된 서적들을 통해 국내 현황을 참조하였다. 조사결과, 벼에 서식하는 곤충은 약 140여종으로 조사되었고, 초식성 곤충 분류군은 각각 수액섭식자, 곡물섭식자, 잎섭식자, 화분섭식자로 세분화하였다. LM벼에 피해가능성이 큰 비표적 곤충은 12종, 중간인 비표적 곤충은 28종, 경미한 비표적 곤충은 101종으로 조사되었으며, 바이러스를 매개하는 종은 11종, 잠재적 해충으로 분류되는 종은 9종으로 나타났다. 위해가설 가설적립단계 모식도를 작성하기 위하여 LM벼에 악영향을 받기 쉬운 곤충의 지리적 분포, 서식지의 특수화, 확산정도, 종풍부도 등을 이용하여 순위를 매겼으며, 10종(벼총채벌레, 애멸구, 벼멸구, 멸강나방, 혹명나방, 우리가시허리노린재, 먹노린재, 벼멸구붙이, 벼메뚜기, 벼잎굴파리)을 추려내었다. 이후 위해가설 가설정립단계 모식도를 작성하였으며 LM 벼의 비표적 생물에 대한 영향을 추론하였다. 본 논문은 국내 자연생태계의 지속가능한 이용 및 보존에 기여하고, LMO의 환경위해성 평가, 심사를 통해 사전위해성을 차단할 수 있는 방법을 제시하고자 작성되었으며, 결과적으로 국민의 건강 및 생물다양성유지, 자연 생태계 보전을 위한 사후 안전관리 체계구축에 활용될 연구 자료를 제공하고자 한다.
A large number of transgenic crop varieties expressing the Bt (Bacillus thuringiensis) insecticidal proteins have been commercialized in 13 countries since 1996. Although the use of these insect-resistant Bt crops can increase crop quality and yields, concerns remain about the potential negative effects of such crops on ecosystems. Transgenic soybean containing cry1Ac gene have been developed to control Lepidopteran pests of soybean and we aimed to investigate whether this soybean could affect non-target arthropods, which play a major role in ecological functions in agricultural ecosystems. In the present study, we first measured the levels of Cry1Ac protein in Bt soybean at different growth stages of soybean and then we compared the community structure of arthropods occurred in fields of transgenic and wild-type soybean. The levels of Cry1Ac protein in transgenic soybean leaves ranged from 252.9 to 604.5 μg g-1 DW. Multivariate analyses (PerMANOVA and NMDS) showed that the composition of the non-target arthropod community was affected by sampling date but not by soybean genotype. These results suggest that transgenic soybean expressing Cry1Ac protein may not adversely affect such non-target arthropod communities.
Under field conditions, we investigated how transgenic Bt cabbage expressing the insecticidal Cry1Ac1 protein affects two target Lepidoptera species — Plutella xylostella (Plutellidae) and Pieris rapae (Pieridae) — as well as the structure of the local non-target arthropod community. When exposed to Bt cabbage line C30, Plutella xylostella and Pieris rapae were significantly less abundant than when in the presence of the non-transgenic control. Multivariate analyses (PerMANOVA and NMDS) showed that composition of the non-target arthropod community was affected by sampling date but not by cabbage genotype. These results suggest that transgenic cabbage expressing Cry1Ac1 protein can be effective in controlling Plutella xylostella and Pieris rapae in the field and that cultivation of this cabbage may not adversely affect such non-target arthropod communities.
Selecting surrogated species is the first step for environmental risk assessment of GM crop on non-target arthropods. To select surrogated species considering the domestic environment, we surveyed the arthropod fauna in five main localities (Changnyeong-gun in Gyeongsangnam-do, Goesan-gun in Chungcheongbuk-do, Gokseong-gun in Jeollanam-do, Hongcheon-gun in Gangwon-do and Hwaseong-si in Gyeonggi-do) in which maize was cultivated with large scale. Maize is one of the main imported GM crop in Korea. Arthropods were surveyed with yellow sticky traps and pitfall traps from May to August with a week interval considering the crop growing season in 2012 and 2013. A total of 135 species of 51 families in 13 orders were identified from the 17,470 arthropods. Six orders (Coleoptera, Araneae, Hemiptera, Diptera, Hymenoptera and Lepidoptera) were dominant in species richness and three orders (Collembola, Thysanoptera and Diptera) in abundance, representing 84% and 86% of the total, respectively. In the composition of fuctional guilds, herbivore group was the most dominant followed by predator group occupying 40% and 37% of the total abundance.
The impact of transgenic Bt maize plant contained Cry1F was evaluated on the oat aphid Rhopalosiphum padi as a non-target insect species. Slightly reduced rates of survival and alata vivipar production were observed on Bt maize than on the non-Bt maize. In addition, slightly low preference to Bt maize plant was observed. Aphid fecundity, measured as the number of offspring produced for 7 days, was higher on Bt maize than on non-Bt maize but not different significantly. ELISA test using Cry1F-antibody revealed that 26% of Cry1F protein compared to the positive control was detected from the whole body of R. padi when the insects were fed Bt maize for 50 days, showing that R. padi can carry Cry1F protein to the higher trophic level when exposed to Bt maize. Taken together, the Bt maize plant is not likely to cause any negative side impacts on non-target insect R. padi but Bt toxin can be transferred to higher predators via R. padi as it carries the toxin.
Large amounts of genetically modified (GM) grains, including maize, cotton and soybean, have been imported to Korea for food, feed and processing (FFP). To evaluatethe environmental impacts, particularly on non-target insects, of FFP GM grains of unknown source, it is a prerequisite to identify Cry protein types in the test GM grains and to establish proper risk assessment protocols. Imported GM maize grains were randomly obtained and their Cry toxins were analyzed by ELISA using Cry1A, Cry1F, and Cry3A antibodies. Since all tested GM maize grains contained Cry1A, Tenebrio molitor, a non-lepidopteran species, was selected as a non-target insect species. A domestic maize strain was used as a non-GM control, which did not show any differences in major nutritional composition from the GM maize grain. Slightly increased survival rate and head capsule width of T. molitor larvae were observed when reared on GM maize powder, demonstrating no sub-chronic adverse effects of GM maize on T. molitor larvae. Head capsule width of T. molitor neonate increased steadily from hatch to 70-day-old, regardless of being fed Bt or non-Bt maize. ELISA test using Cry1A-antibody revealed that concentration of Cry1A protein slowly increased in the whole body of T. molitor from 0 to 50 post-feeding days when the insects were fed GM maize but rapidly decreased within 5 days when Bt maize-fed larvae were transferred to non-Bt maize, showing that the Cry toxin is not accumulated inside the body of T. molitor once the exposure source is removed. In addition, no Cry protein was detected in the hemolymph of the larvae reared on Bt maize, suggesting little possibility of Cry toxin exposure to higher tropic level. Taken together, the imported GM-maize grains is not likely to cause any side impacts on non-target insect T. molitor.