검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2018.05 서비스 종료(열람 제한)
        Background : Multi-stage system were used for development of stable ginseng seedling production. Bed-soil for the production of ginseng seedling in the multi-stage was similar to the conventional bed-soil but the weight of the bed-soil was high and the efficiency of operation in the multi-stage was lowered. In this study, the yield and quality of ginseng seedling was investigated by commercial lightweight bed-soil in the multi-stage facilities, and the possibility of application of lightweight bed-soil. Methods and Results : This study was carried out by a 3-stage cultivation bed using a 50 ㎜ sandwich panel in a house shaded with 85% light-shielding net. The width of the cultivating bed was 90 ㎝, the height was 30 ㎝, and the height of each stage was 50 ㎝. In the first and second stages, the amount of light was insufficient, so two rows of fluorescent lamps were installed and the third stage was used natural light. Ginseng seeds were sown on the cultivating bed in November 2016, and ginseng seeds (native species) were sown with a density of 3 × 3 ㎝. The chemical properties of lightweight bed-soil were pH 5.11, and EC 0.76 dS/m. It was suitable for ginseng seedling cultivation. The bulk density was 0.21 Mg/㎥. Among the growth characteristics of the ginseng seedlings, the root length was the longest as 17.0 ㎝ in the conventional cultivation, and the second stage was the longest at 14.8 ㎝ in the multi-stage facility. The root diameter in the multi-stage system was 0.2 - 0.4 ㎜ thicker than the conventional one. Root weights of lightweight bed-soil were similar to those of conventional cultivation. The yield of ginseng seedlings in the 1 st, 2 nd and 3 rd stage was 721.3 g, 692.0 g, and 394.7 g/1.62 ㎡ respectively. Conclusion : In the production of ginseng seedling using multi-stage facilities, the commercial bed-soil was better than the conventional bed-soil (light, workability). The differences in yields in the multi-stage facilities can be overcome if the growth management such as moisture management is more systematic. If we develop the technology to reuse the bed-soil after harvesting the ginseng seedling, it will be economical and able to supply to farmers.
        2.
        2015.02 KCI 등재 서비스 종료(열람 제한)
        This study was performed to identify the effect of mixed bed soil on growth of aerial parts and root zone of daughter plants for nursery field strawberry seedling raising with expanded chaff. The plant height and leaf area of daughter plants were highest or largest in the mixed soil of ERH +RH (100:0, v/v), followed by ERH+RH (75:25). The higher the mixing ratio of RH, the shorter the plant height or the smaller the leaf area. A similar tendency was observed in fresh weight. Within a root diameter of 0-0.4 mm and a root height range of 0.4-0.8 mm, root surface area and volume were statistically significantly better with treatment of ERH+RH (100:0, v/v) compared to those of roots treated with ERH+RH (75:25), ERH+RH (50:50) and ERH+RH (25:75). The growth rate of aerial parts and root zone of daughter plants were noticeably lower in two mixing ratios of 50:50 and 25:75. According to the mixing ratios of ERH+CD surface treatment, the number of roots was greatest in plants treated with ERH+CD (80:20, v/v) and ERH+CD (85:15) on August 1. However, the number of roots was highest in plants treated with ERH+CD (85:15, v/v) on August 15. Root length was longest in the plant with no treatment, and drastically shortened from ERH+CD (90:10, v/v) in both surface and mixed treatment. Although root weight showed a significant difference in ERH+CD (90:10, v/v) treatment, its increase was gradual. The rate of root growth was highest in ERH+CD (85:15). These study findings suggest that the content ratios of mixed soil ERH+RH (75:25, v/v) or below and ERH+CD (85:15) are thought to be desirable for the production of high quality seedlings.
        4.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to know the substitute effect of Yacto (leaf mold compost) on popped rice hulls compost (PRHC) in Yang-jik nursery bed of Panax ginseng. PRHC was mixed with Yacto as 50:50 ratio, and 1 ~ 2% of the mixed oil cake, rice bran and urea were also added to promote decaying the mixed compost. The mixed compost made by PRHC and Yacto was showed that positive effect on the growth of ginseng seedling when it was mixed with 1% of oil cake and rice bran, and 2% of mixed oil cake. But addition to the 2% of urea in the mixture of PRHC and Yacto was not positive effect on the growth of ginseng seedling. Root yield of the mixed compost was similar to that of conventional compost by made 100% of Yacto. Therefore, the mixed compost can substitute for Yacto when PRHC and Yacto were mixed by 50:50 ratio and added 1% of oil cake and rice bran.