The structure and magnetic properties of composite powders prepared by ball milling a mixture of Fe2O3 ‧ (0.4-1.0)Fe were investigated. Hysteresis loops and differential scanning calorimetry (DSC) curves are used to characterize the materials and to examine the effect of the solid state reaction induced by ball milling. The results showed that a solid state reaction in Fe2O3 ‧ (0.4-1.0)Fe clearly proceeds after only 1 h of ball milling. The system is characterized by a positive reaction heat of +2.23 kcal/mole. The diffraction lines related to Fe2O3 and Fe disappeared after 1 h of ball milling and, instead, diffraction lines of the intermediate phase of Fe3O4 plus FeO formed. The magnetization and coercivity of the Fe2O3 ‧ 0.8Fe powders were changed by the solid state reaction process of Fe2O3 by Fe during ball milling. The coercivity of the Fe2O3 ‧ 0.8Fe powders increased with increasing milling time and reached a maximum value of 340 Oe after 5 h of ball milling. This indicates the grain size of Fe3O4 was clearly reduced during ball milling. The magnetic properties of the annealed powders depend on the amount of magnetic Fe and Fe3O4 phases.
We report the effect of plastic deformation on the thermoelectric properties of n-type Bi2Te2.5Se0.5 compounds. N-type Bi2Te2.5Se0.5 powders are synthesized by an oxide-reduction process and consolidated via sparkplasma sintering. To explore the effect of plastic deformation on the thermoelectric properties, the sintered bodies are subjected to uniaxial pressure to induce a controlled amount of compressive strains (-0.2, -0.3, and -0.4). The shaping temperature is set using a thermochemical analyzer, and the plastic deformation effect is assessed without altering the material composition through differential scanning calorimetry. This strategy is crucial because the conventional hotforging process can often lead to alterations in material composition due to the high volatility of chalcogen elements. With increasing compressive strain, the (00l) planes become aligned in the direction perpendicular to the pressure axis. Furthermore, an increase in the carrier concentration is observed upon compressive plastic deformation, i.e., the donorlike effect of the plastic deformation in n-type Bi2Te2.5Se0.5 compounds. Owing to the increased electrical conductivity through the preferred orientation and the donor-like effect, an improved ZT is achieved in n-type Bi2Te2.5Se0.5 through the compressive-forming process.
In pyroprocessing, the residual salts (LiCl containing Li and Li2O) in the metallic fuel produced by the oxide reduction (OR) process are removed by salt distillation and fed into electrorefining. This study undertook an investigation into the potential viability of employing a separate LiCl salt rinsing process as an innovative alternative to conventional salt distillation techniques. The primary objective of this novel approach was to mitigate the presence of Li and Li2O within the residual OR salt of metallic fuel, subsequently facilitating its suitability for electrorefining processes. The process of rinsing the metallic fuel involved immersing it in a LiCl salt environment at a temperature of 650°C. During this immersion process, the residual OR salt contained within the fuel underwent dissolution, thereby reducing the concentrations of Li2O and Li generated during the OR process. Furthermore, the Li and Li2O dissolved within the LiCl salt were effectively consumed through chemical reactions with ZrO2 particles present within the salt. Importantly, even after the metallic fuel had been subjected to rinsing in a conventional LiCl salt solution, the concentration of Li and Li2O within the salt remained consistent with its initial levels, due to the utilization of ZrO2. Moreover, it was observed that the Li- Li2O content within the metallic fuel was significantly diluted as a result of the rinsing process.
파이로 공정에서는 사용후핵연료 관리 공정 개발의 일환으로 산화 우라늄을 고온 용융염 전해질계에서 전기화학적 방법으로 환원시키기 위한 전해환원 공정이 개발되고 있다. 이에 따른 전해환원 공정의 반응기 설계를 위해서는 전기화학적 이론에 기초한 모델이 요구되고 있다. 본 연구에서는 상 분리를 설명하는 phase-field 이론에 기초하여 우라늄 산화물의 전해환원 모사를 위한 1차원 모델이 개발되었다. 모델은 우라늄 산화물 내 산소 원소의 확산과 펠렛 표면에서 전기화학 반응 속도를 나타내는 매개변수를 사용하여 외부로부터 내부로 진행되는 전해환원을 잘 모사하고 있으며 계산 결과 전체 전류는 산소 원소의 내부 확산에 크게 의존하는 것으로 나타났다. 전해환원 반응에 대한 모델은 대용량 장치 설계에 최적화된 조건 도출에 활용될 것으로 예상되며 장치 설계가 완료되면 공정 연계 모사에 직접 사용될 것으로 기대된다.
This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of WO3 and CoWO4. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at 900℃ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately 0.25-0.5 μm.
The present study focused on the synthesis of Bi-Te-Se-based powder by an oxide-reduction process, and analysis of the thermoelectric properties of the synthesized powder. The phase structure, chemical composition, and morphology of the synthesized powder were analyzed by XRD, EPMA and SEM. The synthesized powder was sintered by spark plasma sintering. The thermoelectric properties of the sintered body were evaluated by measuring its Seebeck coefficient, electrical resistivity, and thermal conductivity. powder was synthesized from a mixture of , , and powders by mechanical milling, calcination, and reduction. The sintered body of the synthesized powder exhibited n-type thermoelectric characteristics. The thermoelectric properties of the sintered bodies depend on the reduction temperature. The Seebeck coefficient and electrical resistivity of the sintered body were increased with increasing reduction temperature. The sintered body of the powder synthesized at showed about 0.5 of the figure of merit (ZT) at room temperature.
The present study focused on the synthesis of Bi-Sb-Te-based thermoelectric powder by an oxidereduction process. The phase structure, particle size of the synthesized powders were analyzed using XRD and SEM. The synthesized powder was sintered by the spark plasma sintering method. The thermoelectric property of the sintered body was evaluated by measuring the Seebeck coefficient and specific electric resistivity. The powder had been synthesized by a combination of mechanical milling, calcination and reduction processes using mixture of , and powders. The sintered body of the powder synthesized by an oxide-reduction process showed p-type thermoelectric characteristics, even though it had lower thermoelectric properties than the sintered body of the thermoelectric powder synthesized by the conventional melting-crushing method.
상용원자로에서 발생하는 산화물 사용후핵연료의 부피감용과 재활용을 위하여 산화물을 금속으로 환원시 키는 공정에 대한 연구가 수행되어 왔다. 다양한 환원법 중에서, 한국원자력연구원은 LiCl-Li2O 용융염을 반 응매질로 사용하는 전해환원공정을 현재 개발 중이다. 파이로 공정의 전단부에 해당하는 전해환원 공정은 PWR 산화물 연료 주기를 소듐냉각 고속로의 금속연료 주기에 연결시켜 준다. 이 논문은 금속전환 공정을 개 발/개선하고, 용량 증대를 수행한 한국원자력연구원의 노력을 요약한다.
경막결정화를 이용한 산화물 사용후연료의 전해환원 공정에서 발생하는 LiCl 염폐기물 내 포함되어 있는 Cs 및 Sr을 분리(농축)에 대한 실험을 수행하였다. 결정화 공정에서 Cs 및 Sr과 같은 불순물들은 불순물들의 용융염 상 및 결정상에 대한 용해도이 차리로 분리되어 최종적으로 작은 양의 LiCl 용융염내에 농축된다. 본 연구에서는 LiCl-CsCl-SrCl2 계에대한 고체-액체 상평형도를 통해 결정화를 통한 분리가능성을 파악하였으며 열전달방정식 의 계산을 통해 경막결정화 운전중 LiCl 용융염상의 온도분포를 예측할 수 있었다. 경막결정화 공정에서 결정성 장 속도는 분리효율에 큰 영향을 미쳤으며 90%의 LiCl 재생율을 가정할 경우 20-25 l/min의 냉각속도 그리고 0.2 g/min·cm2보다 작은 결정성장 속도조건에서 각각의 Cs 및 Sr에 대하여 90% 정도의 분리효율을 나타내었다.