검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 85

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the formation and characterization of Pt2, Pt3 as well as Pt4 atomic clusters in cup-stacked carbon nanotubes (CSCNTs) are evaluated by DFT to examine the adsorption capacity under the clusters. The results show that the Pt clusters move toward the bottom edge or form rings in the optimized stable structure. Pt far from the carbon substrate possesses more active electrons and adsorption advantages. The three clusters can adsorb up to 17, 18, and 16 hydrogen molecules. Loading metal clusters at the bottom edge maintains a relatively good adsorption property despite the low binding energy through comparative studies. The adsorption capacity does not increase with the number of Pt for metal aggregation reducing the hydrogen adsorption area thus impacting the hydrogen storage ability and the aggregation phenomenon limiting the action of Pt metal. During adsorption, chemisorption occurs only in the Pt2 cluster, while multiple hydrogen molecules achieve physiochemical adsorption in the Pt3 and Pt4 clusters. Compared with the atomic loading of the dispersion system in equal quantities, the dispersion system features higher molecular stability and can significantly reduce the energy of the carbon substrates, providing more sites for hydrogen adsorption in space.
        4,900원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sulfamonomethoxine (SMM) is widely used to inhibit Gram-positive and Gram-negative bacteria, and improper use of SMM is detrimental to human health and ecological stability. Therefore, a sensitive determination method is of great importance for monitoring SMM residues in water, meat, milk, eggs, etc. Herein, a Pt-functionalized S-doped graphitic carbon nitride (Pt/Sg- C3N4) was constructed for the electrochemical determination of SMM. The as-developed Pt3/ S3-g-C3N4 sensor showed a significant SMM determination performance. The electrochemical oxidation of SMM on Pt3/ S3-g-C3N4/GCE involves two electron transference and was limited by a diffusion process. The as-developed Pt3/ S3-g-C3N4/GCE sensor has good linearity in a wide range of 0.1–120 μmol/L and a remarkably low limit of detection (LOD) of 0.026 μmol/L for SMM determination. In addition, the sensor has high selectivity and anti-interference properties for SMM detection. Furthermore, this Pt3/ S3-g- C3N4/GCE sensor has good reproducibility and stability. Moreover, the recoveries were in the range of 89.6–112.2% for the detection of the SMM in a real sample of egg. The proposed Pt3/ S3-g-C3N4/GCE sensor shows great potential for practical applications in detecting trace amounts of antibiotics.
        4,200원
        4.
        2023.11 구독 인증기관·개인회원 무료
        Pt/C catalysts were prepared using black carbon (CB), and evaluated for their potential application as a catalyst of liquid-phase catalystic exchange for tritium treatment. CB was treated with 10% H2O2 solution for 0 and 2 hours at 105°C, Ethylene glycol and 40wt% Pt were added to the dried treated sample to prepare a Pt/C catalyst. The physical and chemical properties of the prepared catalysts were evaluated by BET, XRD, elemental analysis (EA), and TEM analyses. As a result of BET analysis, the surface area of CB without 10% H2O2 was 237.2 m2·g-1, and after treatment with 10% H2O2, it decreased to 181.2 m2·g-1 for 2 hours. However, the internal surface area increased, indicating the possibility that more Pt could be distributed inside the CB treated with 10% H2O2. In the XRD analysis results, the presence of Pt was confirmed by observing the Pt peak in the prepared Pt/C catalyst, and it was also observed through TEM analysis that Pt was evenly distributed within the CB. The elemental analysis (EA) results showed that the ratio of S and N decreased and the ratio of O increased with increasing 10% H2O2 treatment time. The H2O2 treated carbon supported Pt catalysts and polytetrafluoroethylene were then loaded together on a foamed nickel carrier to obtain hydrophobic catalysts. Our hydrophobic Pt catalyst using H2O2 treated black carbon are expected to be usefully used in the tritium treatment system.
        5.
        2023.06 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 공정 간소화, 균일한 나노 입자 형성, 백금 저감 및 활용도를 높이기 위하여 원자층 증착법 (Atomic Layer Deposition, ALD)을 통하여 양이온 교환막 연료전지용 촉매를 제조하고 증착 온도에 따른 백금 입자 형성 거동 을 확인하였다. 증착 온도는 250 °C, 300 °C, 350 °C로 조절하여 백금 촉매를 형성하였으며 각 각의 촉매의 증착 양 상을 확인하기 위하여 Thermogravimetric analysis, X-ray diffraction 및 Transmission electron microscopy를 도입하여 담지량, 백금 입자 분포, 크기 및 결정구조 등을 확인하였다. 합성된 백금 촉매를 연료전지에 적용하기 위해서 Cyclic Voltammetry 기법을 통해서 전기화학적 활성 표면적를 구하고, Membrane Electrode Assembly 셀을 제작하여 전지 특성을 확보하였다. 최종적으로, 백금 촉매 제조 시 ALD 증착 온도는 300 °C 이하에서 합성해야 됨을 밝혀냈으며, ALD으로 제작된 백금 촉매가 기존 습식 촉매보다 더 우수한 특성을 보임을 확인하였다. 해당 연구는 ALD을 통하여 다양한 접근법으로 촉매를 제조할 시, 기본적인 ALD 공정 정보 및 ALD 촉매 합성 방향성을 제공할 수 있다.
        4,000원
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The poor durability issue of polymer electrolyte membrane fuel cells is a major concern in terms of their commercialization. To understand the degradation mechanism of the catalysts, an accelerated durability test (ADT) was conducted according to the protocol established by internationally accredited organizations. However, reversible and irreversible factors contributing to the loss of activity have not yet been practically segregated because of the limitations of a batch-type three-electrode system, leading to the misunderstanding of the deactivation mechanism. In this study, we investigated the effect of a fresh electrolyte on the ADT and recovery process. When the fresh electrolyte was used at every range of the cycle, the chances of incorrect detection of dissolved CO and Pt ions in the electrolyte were very low. When the same electrolyte was used throughout the test, the accumulated Pt ions were deposited on the surface of the Pt nanoparticles or carbon support, affording an increased electrochemical surface area (ECSA) of Pt. Therefore, we believe that periodic replacement by a fresh electrolyte or a continuous-flow electrolyte is essential for the precise determination of the structural and electrochemical changes in Pt/C catalysts.
        4,000원
        7.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The oxidation resistance of the diffusion aluminide bond coat (BC) is compromised largely by interdiffusion (ID) effects on coated turbine blades of aeroengines. The present study is designed to understand the influence of ID on βNiAl coatings or BC. In this regard, nickel substrate and CMSX-4 superalloy are deposited. In total, four sets of BCs are developed, i.e. pure βNiAl (on Ni substrate), simple βNiAl (on CMSX-4 substrate), Zr-βNiAl (on CMSX-4 substrate) and Pt-βNiAl (on CMSX-4 substrate). The main aim of this study is to understand the interdiffusion of Al, Zr and Pt during preparation and oxidation. In addition, the beneficial effects of both Zr and platinum are assessed. Pure βNiAl and simple βNiAl show Ni-outdiffusion, whereas for platinum inward diffusion to the substrate is noticed under vacuum treatment. Interestingly, Zr-βNiAl shows the least ID in all BCs and exhibit stability under both vacuum and oxidation treatments. However, its spallation resistance is slightly lower than that of Pt-βNiAl BC. All BCs show similar oxide growth trends, except for Zr-βNiAl, which exhibits two-stage oxidations, i.e. transient and steady-state. Moreover, it is suggested that the localized spallation in all BCs is caused by βNiAl - γ’-Ni3Al transformation.
        4,000원
        12.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have studied a method to prepare polydopamine-modified reduced graphene oxide-supported Pt nanoparticles (Pt– PDA–RGO). The Pt–PDA–RGO nanocomposites were synthesized by a wet-coating process, which was induced by selfpolymerization of dopamine. As an eco-friendly and versatile adhesive source in nature, dopamine could be easily adhered to surfaces of organic material and inorganic material via polymerization processes and spontaneous adsorption under weak alkaline pH conditions. To apply the unique features of dopamine, we synthesized Pt–PDA–RGO nanocomposites with a different quantity of dopamine, which are expected to preserve the improved Pt adsorption on graphene, resulting in the enhanced electrocatalytic performance. The morphology and micro-structure were examined by field emission scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Compared to pristine Pt–deposited RGO (Pt–RGO), Pt–PDA–RGO (30 wt% dopamine against RGO) nanocomposites showed a superior electrochemical active surface area for a methanol oxidation. This could be related to the fact that the optimized c
        4,000원
        13.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고온에서 진행되는 프로판 탈수소 반응에서 촉매의 불활성화의 주된 원인은 코크 침적, 소결현상이 있다. 이러한 불활성화를 줄이는 촉매를 연구하기 위해, 본 연구에서는 열적 안정성이 높은 MgAl2O4를 담체로 적용하여 프로판 탈수소 반응용 촉매로의 활용성을 확인하고자 하였다. Alcohthermal method로 MgAl2O4를 소성온도 800, 900, 1000℃로 달리하여 제조하였고, Pt와 Sn을 공동함침법으로 담지하여 Pt-Sn/MgAl2O4촉매를 제조하였다. 열적안정성의 확인을 위해 반응온도를 고온의 650, 600℃에서 진행하였다. 반응실험 결과 반응온도에 상관없이 담체의 소성온도가 800℃인 담체적용 촉매일 때 프로판 탈수소 반응 실험의 전환율과 수율이 담체소성온도가 900,1000℃인 담체적용 촉매보다 높은 것을 확인하였고, 반응온도가 고온인 650℃일 때는 Pt-Sn/θ-Al2O3보다도 더 높은 수율을 가지는 것을 볼 수 있었다. 특성분석으로는 TGA, BET, XRD, CO-화학흡착, SEM-EDS 분석을 실시하였다. MgAl2O4-800oC가 좋은 수율과 Pt분산도 및 적은 불활성화 정도의 관계를 서로 연관 지어 확인하였다.
        4,200원
        14.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We perform density functional theory calculations to study the CO and O2 adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and O2, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and O2 binding energy values, which are required for facile CO oxidation. On the other hand, the O2 binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than O2. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Ptbased CO-tolerant CO oxidation catalyst.
        4,000원
        15.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high E1/2 of 0.55 V, and a low ΔE1/2= 0.32 mV. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped proteinbased carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.
        4,000원
        16.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon chain inserted carbon nanotubes (CNTs) have been experimentally proven having undergone pronounced property change in terms of electrical conductivity compared with pure CNTs. This paper simulates the geometry of carbon chain inserted CNTs and analyzes the mechanism for conductivity change after insertion of carbon chain. The geometric simulation of Pt doped CNT was also implemented for comparison with the inserted one. The results indicate that both modification by Pt atom on the surface of CNT and addition of carbon chain in the channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations. All the calculations were obtained based on density functional theory method.
        4,000원
        17.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/HfO2/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of HfO2. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/HfO2/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/HfO2/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.
        4,000원
        18.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        19.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        20.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        금속 산화물과 혼합한 Pt-Sn/Al2O3 촉매의 프로판 탈수소 반응 성능의 향상 가능성에 대해 서 연구하였다. 금속 산화물로서 Cu-Mn/γ-Al2O3, Ni-Mn/γ-Al2O3, Cu/α-Al2O3를 제조하여 Pt-Sn/Al2O3 촉매와 혼합하고, 프로판 탈수소 반응 성능을 측정하였다. 이 결과들을 불활성 물질인 glass bead를 혼합한 Pt-Sn/Al2O3 촉매를 기준샘플로 삼아 비교하였다. 촉매와 금속산화물을 환원처리 하지 않고 반응 실험한 경우, 576.5℃에서 기준샘플의 전환율 8% 대비, Cu-Mn/γ-Al2O3를 혼합한 Pt-Sn/Al2O3 촉매가 14.9%의 높은 전환율과 96.8%의 선택도를 보였다. 촉매와 금속산화물을 환원 처 리하여 반응활성을 측정한 경우, Cu/α-Al2O3과 Pt-Sn/Al2O3의 혼합촉매가 기준샘플대비 초기에 높은 수율을 보였다. 그러나, 촉매를 환원 처리한 경우 전반적으로 전환율 상승이 크지 않았고, 이것으로 Cu-Mn/γ-Al2O3의 격자산소가 탈수소반응의 전환율 증가 영향을 주었음을 알 수 있었다.
        4,000원
        1 2 3 4 5