검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conductive carbon cloths (CCs) have been great attention as a promising current collector for flexible supercapacitors that supply power to portable and wearable electronics. However, the hydrophobic surface and weak adhesion with active materials has limited to be adopted as the binder-free and flexible electrode with mechanical/electrochemical stability. In this work, we demonstrate preparation of binder-free and flexible electrodes based on polyaniline (PANI) on carbon cloth. Polydopamine (PDA) layer are used to impart hydrophilicity, leading to uniform growth of PANI on the hydrophobic surface of carbon. Furthermore, PDA layer improves adhesion strength between PANI and carbon substrates, which allows for superior mechanical stability under ultrasonic condition. PANI-based flexible electrode shows high areal capacitance (160.8 mF cm− 2 at 0.5 mA cm− 2), good rate capability (71.1% even at high current density of 10 mA cm− 2), and long-term cycling stability (82.6% capacitance retention after 1500 cycles). Furthermore, a quasi-solid-state flexible supercapacitor reveals remarkable mechanical flexibility and durability, with superior capacitance retention (~ 100%) in bent state and after repetitive 1000 cycles.
        4,000원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
        4,000원
        6.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have studied a method to prepare polydopamine-modified reduced graphene oxide-supported Pt nanoparticles (Pt– PDA–RGO). The Pt–PDA–RGO nanocomposites were synthesized by a wet-coating process, which was induced by selfpolymerization of dopamine. As an eco-friendly and versatile adhesive source in nature, dopamine could be easily adhered to surfaces of organic material and inorganic material via polymerization processes and spontaneous adsorption under weak alkaline pH conditions. To apply the unique features of dopamine, we synthesized Pt–PDA–RGO nanocomposites with a different quantity of dopamine, which are expected to preserve the improved Pt adsorption on graphene, resulting in the enhanced electrocatalytic performance. The morphology and micro-structure were examined by field emission scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Compared to pristine Pt–deposited RGO (Pt–RGO), Pt–PDA–RGO (30 wt% dopamine against RGO) nanocomposites showed a superior electrochemical active surface area for a methanol oxidation. This could be related to the fact that the optimized c
        4,000원
        7.
        2018.11 구독 인증기관·개인회원 무료
        A highly performing and durable forward osmosis (FO) membrane was prepared using a polydopamine-modified polyolefin (DPO) support via an aromatic solvent (toluene)-based interfacial polymerization (IP). The hydrophobic polyolefin support was uniformly hydrophilized by polydopamine coating, which provided long term operation stability. In addition, a highly permselective selective layer was prepared on the hydrophilic DPO support by the toluene-based IP, which promoted amine diffusion and the subsequent IP reaction. As a result, the prepared DPO-supported TFC membrane exhibited significantly high FO performance, which was ~4.9 times higher FO water flux and ~62% lower specific salt flux than those of a commercial FO (HTI-CTA) membrane in FO mode. Furthermore, its excellent mechanical and chemical stability enabled stable operation.
        9.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 큰 각광을 받고 있는 표면개질소재 중 하나인 도파민은 알칼리 수용액상에서 자발적으로 반응이 진행되어 금속, 고분자 등 거의 모든 소재에 강하게 흡착되는 물질로 흡착 메커니즘 및 반응 후 최종구조에 관해 많은 논란이 있다. 기 존의 도파민의 최종구조는 aryl-aryl 결합에 의한 고분자 구조가 제안되었지만, 본 연구에서는 구조분석을 통해 기존에 제안된 aryl-aryl 결합이 형성되지 않는 결과와 열적거동을 통해 고분자의 특징이 나타나지 않는 것을 확인하였으며, 기체투과거동을 통해 고분자와 같이 비다공성 코팅층을 형성하지 못하는 결과를 토대로, 도파민의 최종구조는 2차 결합에 의한 초분자 구조 로 서로 응집되어 있는 것으로 판단된다.
        4,000원