리튬이온배터리는 높은 에너지 저장 효율과 환경 지속 가능성으로 점점 더 많은 관심을 받고 있다. PU 기반 리튬이온배터리에 사용되는 기존의 고분자 (polyurethane, PU) 바인더는 높은 유연성과 기 계적 강도를 제공하여 전극의 부피 변화를 감소시키고 구조적 안정성을 확보하는데 효과적이지만, 이와같 은 고분자 계열의 바인더는 전기전도도가 낮고 생산 및 폐기 과정에서 환경 문제를 야기할 수 있다. 따라 서, 본 연구에서는 이러한 고분자계 바인더의 단점을 해결하고자 고분자계 바인더로 많이 사용되는 PU 기 반 리튬이온배터리에 비해 향상된 전기화학적 성능과 안정성을 가진 새로운 바인더로서 석유계 피치 (SM260)/고분자 (polyurethane, PU) 복합소재 기반 바인더를 개발하였다. 특히, PU 바인더가 적용된 리튬 이온배터리는 100 사이클 후 가역 용량이 80 mAh/g으로, 초기 용량의 25%의 용량 유지율을 나타낸 반면, 본 연구에서 개발한 석유계 피치 (SM260)/고분자 (polyurethane, PU) 복합소재 복합 바인더가 적용된 리 튬이온배터리는 100 사이클 후 가역용량이 208 mAh/g으로 유지되고, 초기 용량의 68% 용량 유지율을 나 타내었다.
본 연구에서는 유기계 산화 방지제인 가려진 페놀이 그래프팅된 산화 그래핀(hindered phenol-grafted graphene oxide, HP-GO)을 합성하였고, 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조하여 고분자 전해질 막 연료전지에 응용하 였다. HP-GO는 3,5-디-tert-뷰틸-4-히드록시페닐프로피오닐 클로라이드에 존재하는 염화 카보닐기(carbonyl chloride)와 GO에 존재하는 히드록시간의 치환 반응을 통해 합성되었으며, 합성된 HP-GO를 고분자 기지체 대비 0.01~0.5 wt%까지 포함하는 복합 막을 제조하여 순수 Nafion과의 물성 차이를 비교하였다. 특정 함량의 HP-GO가 첨가된 복합 막은 순수 Nafion에 비해 우수한 인장강도와 수분 흡수율 및 치수안정성을 나타내었다. 특히 HP-GO의 산화 방지 특성으로 인해 HP-GO가 첨가된 복 합 막은 장시간의 펜톤 평가(Fenton’s test) 이후 순수 Nafion 대비 높은 산화 안정성을 나타내었다. 또한 HP-GO에 의한 향상 된 수분 흡수율에 의해 복합 막은 전 습도 구간에서 순수 Nafion 대비 우수한 수소 이온 전도도를 나타내었다.
본 연구에서는 산화 방지 특성이 있는 가려진 페놀기를 도입한 산화 그래핀(hindered phenol-grafted graphene oxide, HP-GO)을 합성한 후 탄화수소계 고분자인 sulfonated poly(arylene ether sulfone) (SPAES)을 기지체로 사용한 복합 막을 제조하여 고분자 연료전지 시스템에 응용하고자 하였다. HP-GO는 GO 표면의 하이드록시기(hydroxy group)와 HP의 염화 카 보닐(carbonyl chloride) 간의 친핵성 아실치환 반응을 통해 합성되었으며, HP-GO의 비율을 다르게 첨가한 복합 막을 제조한 후 선형 SPAES 막과의 비교를 통해 성능 특성 변화를 확인하였다. 특정 함량의 HP-GO를 첨가한 복합 막의 경우 선형 SPAES 막에 비해 체적 안정성과 기계적 강도 및 수소 이온 전도도가 증가된 것을 확인할 수 있었으며, 펜톤 평가(Fenton’s test) 진행 후 막 분해 시간 및 잔여 막 무게 비율이 증가되는 경향을 통해 화학적 내구성 역시 증가한 것을 확인할 수 있었다.
The lithium-ion battery has been utilized in various fields including energy storage system, portable electronic devices and electric vehicles due to their high energy and power densities, low self-discharge, and long cycle-life performances. However, despite of various research on electrode materials, there is a lack of research on developing of binder to replace conventional polymer-based binding materials. In this work, petroleum pitch (MP-50)/polymer (polyurethane, PU) composite binder for lithium-ion battery has fabricated not only to use as a binding material, but also to re-place conventional polymer-based binder. The MP-50/PU composite binder has also prepared to various ratios between petroleum pitch and polymer to optimize the physical and electro-chemical performance of the lithium-ion battery based on the MP-50/PU composite binder. The physical and electrochemical performances of the MP-50/PU composite binder-based lithium-ion battery were evaluated using a universal testing machine (UTM), charge/discharge test. As a result, lithium-ion battery based on the MP-50/PU composite (5:5, mass ratio) binder showed optimized performances with 1.53 gf mm− 1 of adhesion strength, 341 mAh g− 1 of specific discharge capacity and 99.5% of ICE value.
현재 철근콘크리트 분야에서 부재의 철근을 FRP 보강재로 대체하기 위한 연구가 활발히 진행되고 있다. CFRP(Carbon Fiber Reinforced Polymer)는 특히 내화학성이 우수하여 보수 및 보강재로 큰 장점을 가지 며, RC 구조물의 보강재로 주로 사용되고 있다. CFRP 그리드의 경우 수지를 이용하여 섬유를 결합한 형 태를 가진다. 이러한 형태는 외부의 영향에 의해 수지 혹은 섬유의 손상으로 강도 저하가 발생할 수 있다. CFRP 그리드의 산성에 대한 저항성을 침지기간에 따른 인장강도 변화량 및 SEM과 무게 변화를 통해 확인하고자 한다. 따라서 Ph 농도 1~3의 강산성에 CFRP 그리드를 침지시키는 방식을 통해 내 화학 실험을 진행한다. 황산()을 이용하여 산성 용액을 제작한 후 실험을 진행하였다. 실험은 항온장치에서 60℃의 온도로 침지기간은 30, 60, 90, 180일로 한다. 그리드의 인장강도 변화를 확인하기 위하여 기간 별 시편의 수는 5개로 하며 침지시키지 않은 그리 드를 포함하여 총 25개의 시편을 실험한다. 인장실험을 통해 변형률 및 인장강도 변화를 확인한다. 그 리드의 섬유 및 수지의 변화 확인을 위해 실험진행 전 그리드의 무게를 측정 및 SEM(전자주사현미 경) 데이터 확보 후 실험을 진행한다. 기간별 침지된 그리드와 비교를 통해 기간별 섬유 및 수지의 영 향 정도를 확인한다. 본 연구에서는 산성이 CFRP 그리드에 미치는 영향을 조사하기 위해 인장강도, SEM, 무게 변화를 통해 연구하였으며, 이를 통해 산성의 영향을 받는 CFRP 그리드 부재의 안정성을 평가하고자 한다.
The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
본 연구에서는 산화 방지 특성이 있는 가리워진 아민기를 함유한 산화 그래핀(hindered amine grafted graphene oxide, HA-GO)을 합성하여 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조한 후 고분자 전해질 막 연료전지 시스템에 응용하였다. HA-GO는 4-아미노-2, 2, 6, 6-테트라메틸-4-피페리딘(4-amino-2, 2, 6, 6-tetramethyl piperidine)에 존재하는 아민 기와 GO 표면에 존재하는 에폭시기의 개환 반응을 통해 제조하였으며, 합성된 HA-GO의 함량을 달리한 복합 막을 제조하여 순수 Nafion 막과 성능 특성을 비교하였다. HA-GO가 첨가된 복합 막은 Nafion 단일 막에 비해 기계적 물성, 화학적 안정성 및 수소이온 전도 특성이 향상되었다. 특히 HA-GO의 산화 방지 특성으로 인해 HA-GO가 첨가된 복합 막은 펜톤 평가 (Fenton’s test) 이후 수소이온 전도도의 유지 특성이 Nafion 단일 막에 비해 큰 폭으로 향상된 것을 확인할 수 있었다.
Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.
본 연구에서는 실리카 복합막 기반 고분자 전해질막을 5단 연료전지 스택에 적용하여 성능 평가를 수행하였다. 이를 통하여, 개별 구성 요소의 성능도 중요하지만, 전체적인 관점에서 공급되는 연료의 유량이 스택 성능에 중요한 역할을 하며, 특히 수소의 유량에 크게 의존한다는 사실이 확인하였다. 산소의 유량을 증가시켜도 성능의 변화는 미미한 반면, 수소 의 유량을 증가시키면 성능이 향상되는 것을 확인하였다. 그러나 수소의 유량 증가는 수소와 산소 유량 비율의 불균형을 초 래하여 장기적으로는 스택 성능과 내구성을 저하시키는 문제가 관찰되었다. 이러한 현상을 스택 구성 요소 및 개별 단위 셀 에서도 관찰할 수 있었으며, 따라서 스택 운전 시 각 구성 요소의 성능을 최적화하는 것 외에도 균일한 유량 제어를 위해 유 로 설계 및 운전 조건을 최적화하는 것이 중요하다는 것을 알 수 있었다. 마지막으로 실리카 복합막은 최대 출력 기준 25 W 이상의 성능을 나타내어 실제 연료전지 시스템에 적용하기에 충분한 성능을 갖춘 것으로 판단된다.
본 연구는 나노섬유를 제조하는데 빠르고 효과적인 전기방사법을 이용하여 PVA(Polyvinyl alcohol)와 AgNO3를 혼합하여 제조한 용액을 금속산화물 기반 나노 섬유로 이루어진 투명 전극을 제조하고 그 특성을 분석하였다. PVA/AgNO3 혼합 용액을 전기방사법을 이용하여 유리기판 위에 나노 섬유 구조체 형태로 방사하여 250 ℃에서 2 시간 동안 열처리 과정을 통해 전기 전도성이 향상된 은 나노 섬유 기반 투명 전극을 제조하였다. 제조된 투명전극은 four-point probe 장비를 이용하여 전기적 특성을 분석하였으며, UV - Vis spectrophotometer 를 이용하여 제조된 투명전극의 투과도를 확인하였다. 또한, Scanning Electron Microscopy (SEM)과 Energy Dispersive Spectrometer(EDS)를 통해 은 나노 섬유의 표면 특성과 성분을 확인하였다. 이러한 분석들을 통해, 전기 방사 시간에 따른 면 저항과 투과도의 최적화된 조건을 확인할 수 있었으며, 은 나노 섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 태양전지, 디스플레이, 터치스크린과 같은 차세대 유연 디스플레이에 적용 가능성을 보여주었다.