검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 63

        43.
        2023.02 KCI 등재 서비스 종료(열람 제한)
        The effects of essential oils on pH, pathogens, and volatile fatty acids (VFA) in two poultry litters were investigated through a lab study. Essential oil-added poultry litters were randomly divided to two groups: control (200 g poultry litter) and Treatment (50 g thymol/Briefly, 200 g broiler litter was treated with or without 50 g thymol (Control and T1, respectively; 1 groups) and 200 g duck litter was treated with or without 50 g carvacrol (Control and T2, respectively; 2 group). Adding thymol to broiler litter increased the pH, reduced pathogens, and did not affect VFA. Interestingly, adding carvacrol slightly reduced the pH of duck litter, but had no significant effect on reducing pathogens and VFA. This difference is probably because the essential oil used and the properties of the two litters are different. In addition, pH was thought to control the odor generated from the litter, but this has not been proven. Further field studies should focus on clarifying this point.
        44.
        2022.11 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the structure and composition (i.e., pH, moisture, total-N, pathogens, and volatile fatty acids) of broiler and duck manure treated with larvae of three insect larvae, namely, Tenebrio molitor, Protaetia brevitarsis seulensis, and Ptecticus tenebrifer. Hatched Tenebrio molitor (n=300), Protaetia brevitarsis seulensis (n=60), and Ptecticus tenebrifer (n=300) were used in this study; specially, the larvae were divided into six treatments with three replicates. The treatments were as follows: T1: 110 g broiler manure + Tenebrio molitor larvae (n=50), T2: 110 g duck manure + Tenebrio molitor larvae (n=50), T3: 125 g broiler manure + Protaetia brevitarsis seulensis larvae (n=10), T4: 125 g duck manure + Protaetia brevitarsis seulensis larvae (n=10), T5: 105 g broiler manure + Ptecticus tenebrifer larvae (n=50), and T6: 105 g duck manure + Ptecticus tenebrifer larvae (n=50). For all the larval treatments, the following results were observed: The moisture content of the duck manure treat with three insect larvae was higher than that of the broiler manure (p<0.05), whereas broiler manure had a higher pH (p<0.05). In addition, the total nitrogen content of broiler manure was higher than that of duck manure (p<0.05). However, the insect larvae did not significantly affect pathogens (E.coli and Salmonella) and the volatile fatty acids (p>0.05). In conclusion, the use of the three insect larvae to create organic nitrogen compost using poultry manure is feasible.
        45.
        2022.11 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the efficacy of larval stages of three species, namely, Tenebrio molitor, Protaetia brevitarsis seulensis, and Ptecticus tenebrifer larvae, in degrading poultry manure, specially, broiler and duck manure. The survival rates of larvae were also noted. For the experiment, T. molitor (n=300), P. brevitarsis seulensis (n=60), and P. tenebrifer (n=300) hatched larvae were randomly divided into six groups with three replicates. The degaradation efficacy tests were then performed for 30 days in a laboratory. The test groups were as follows: T1, 110 g broiler manure + T. molitor larvae (n=50); T2, 110 g duck manure + T. molitor larvae (n=50); T3, 125 g broiler manure + P. brevitarsis seulensis larvae (n=10); T4, 125 g duck manure + P. brevitarsis seulensis larvae (n=10); T5, 105 g broiler manure + P. tenebrifer larvae (n=50); and T6, 105 g duck manure + P. tenebrifer larvae (n=50). The groups showed significant efficacy in degrading broiler and duck manure (p<0.05). The highest survival rates were recorded for T. molitor larvae in both manure types [T1 (92.67%) and T2 (50%)], followed by P. brevitarsis seulensis larvae (T4, 40%) and P. tenebrifer larvae (T6, 14.67%) in duck manure. Next, the survival rates of P. brevitarsis seulensis (T3) and Ptecticus tenebrifer larvae (T5) in broiler manure were 0%. In conclusion, these results point to the feasibility of using insect larvae to degrade broiler and duck manure.
        46.
        2022.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to examine the performance of poultry production and ammonia emissions from poultry litter when the mealworm (Tenebrio molitor L.) powder was fed to broilers and ducks. In Experiment 1, a total of 180 1-day-old broilers (Arbor acres) were allocated to two treatments with three replicates in a completely randomized design. In Experiment 2, ducks were used in the same method as in Experiment 1. The dietary treatments were as follows: basal diets as control and basal diets with 1.5% Tenebrio molitor L. powder as T1. In Experiment 1, broiler production was not affected by the addition of mealworm powder (p>0.05). Ammonia from broiler litter was observed significantly different in the two treatments at 4 and 5 weeks (p<0.05); however, in other weeks ammonia measured did not show significance different (p>0.05). In Experiment 2, feeding of mealworm powder had no statistical significance on duck productivity (p>0.05). Ammonia emissions from duck litter were not statistically significant in the two treatments at 2 to 5 weeks (p>0.05); however, there was a difference at 6 weeks (p<0.05). Therefore, the addition of mealworm powder to broiler and duck diets did not only improved weight gain and feed efficiency, but also effectively reduced ammonia in poultry litter.
        47.
        2022.02 KCI 등재 서비스 종료(열람 제한)
        This study investigated the effect of adding poultry litter additive containing probiotics and amino acids to the litter on weight gain in ducks and ammonia content in poultry litter. Nine hundred 1-day-old ducks (Pekin) were randomly distributed into three groups (300 birds per treatment divided into three replicates) using a randomized block design. Treatments were top-dressed on the litter surface at rates of 2 kg poultry litter additives (T1) and 2 kg macsumsuk (T2) per m2, and untreated poultry litter was used as the control. Overall, a significant difference (p<0.05) in weight gains was observed at 3 and 4 weeks, but not at 5 and 6 weeks. After 4 weeks, when compared to other treatments, the addition of poultry litter additive tended to increase the average body weight gain (90-130 g). The ammonia content was affected by all treatments (p<0.05) over time except at 3 weeks, however, compared to other treatments, the poultry litter additive decreased the ammonia content. In particular, the rate of ammonia reduction by the poultry litter additives over time was approximately 20.2%-49.2%. Regarding temperature, a significant difference was observed in all treatment groups (p<0.05), except at 3 weeks. In conclusion, considering poultry litter additives and temperature, the increase in duck weight gain was associated with a decrease in ammonia content in the poultry litter.
        48.
        2020.01 KCI 등재 서비스 종료(열람 제한)
        The effects of liquid potassium permanganate (KMnO4) on the litter quality of poultry were investigated. Two-hundred -forty 0-day-old broiler chickens (Arbor Acres) were randomly assigned to two treatments with four replicated pens of 30 chickens each. Treatment liquid KMnO4 at a rate of 50 g of liquid KMnO4/kg of poultry litter was sprayed onto the litter surface using a small hand pump; others served as a control that was applied without liquid KMnO4 additions. Compared with controls, the treatment liquid KMnO4 showed no differences in pH, total nitrogen and ammonia concentration. It was concluded that liquid KMnO4 did not significantly increase poultry litter quality. Mechanisms relating to increasing litter pH and ammonia using liquid KMnO4 are an oxidant agent (not acid-foaming agents).
        49.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the effect of chemical blend additives (a combination of ferrous sulfate and aluminum chloride) on decreasing pathogens in poultry litter. A total of 240 broiler chickens were assigned to 4 chemical treatments with 4 replicates of 15 chickens per pen. The four chemical blend additives were a control (no treatment), 25 g ferrous sulfate + 75 g aluminum chloride/kg poultry litter, 50 g ferrous sulfate + 100 g aluminum chloride/kg poultry litter and 100 g ferrous sulfate + 150 aluminum chloride/kg poultry litter. During the 6-wk experimental period, there were significant differences in both E.coli and Salmonella enterica for weeks 4 through 6, but not at weeks 1 and 3, respectively. Consequently, using chemical blend additives that serve as methods to control strict environmental regulations reduced pathogens in poultry litter.
        50.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the effect of sea urchin shell powder, used in broiler diet, on Esherichia coli and Salmonella in litter produced by the broilers. A total of 120 broiler chickens were fed 1 of 3 treatment diets (10 chickens per pen) in a randomized block design treatments with 4 replications. Sea urchin shell powder was used in the concentrations of 0.5% and 1% in the basal diets; the control diet was constituted of basal diet. During the 3-week feeding trials, none of the treatments significantly affected the E. coli populations in poultry litter at weeks 0 and 1, nor did they affect the and S. enterica populations at weeks 1 and 3. However, dietary sea urchin shell powder addition affected the population of E. coli at weeks 2 and 3, and that of S. entericaat weeks 0 and 2 (P<0.05). It is therefore concluded that the use of dietary sea urchin shell powder (0.5% and 1%) will be beneficial enough to reduce E. coli, rather than S. enterica in poultry litter over short-term periods.
        51.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        We conducted two experiments to evaluate effects of feeding various types of red ginseng marc and Houttuynia cordata (H.cordata) on blood profiles of poultry in a completely randomized design. In experiment 1 (28 d), a total of 240 broilers (Arbor acres) were used. Four dietary treatments (15 broilers per pen with four replicate pens per treatment) were included: (1) control, (2) 2% red ginseng marc, (3) 1% fermented red ginseng marc with red koji, and (4) 2% liquid red ginseng. There were no significant differences in HDL and LDL-cholestrol among treatments (P > 0.05), but total cholesterol and triglyceride decreased in diets supplemented with red ginseng marc and 1% fermented red ginseng marc with red koji compared to that in the control treatment (P < 0.05). In experiment 2 (38 d), a total of 240 Pekin ducks were randomly divided into 4 groups by dietary treatments (control, 1% fermented H. cordata powder with red koji, 1% fermented H. cordata pelleted with red koji, and 1% fermented H. cordata coated with red koji) with 4 replicates of 15 ducks in each group. Total cholesterol and VLDL-cholesterol were not affected by diet with various types of H. cordata. However, increase in HDL-cholesterol and decrease in LDL and VLDL-cholesterol were greater in treatments with different types of H. cordata than in the control treatments (P < 0.05). In conclusion, using various types of red ginseng marc and H. cordata in poultry diets was effective for increasing HDL-cholesterol and decreasing total, LDL, and VLDL-cholestrol or triglyceride.
        52.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        본 연구는 안전한 육계 및 계란 생산에 기반이 되는 닭 농장의 HACCP 심사의 객관성을 높이기 위하여 현행 심사항목 점수부여 체계의 문제점에 대한 개선방안을 도출하기 위한 목적으로 실시하였다. 기존 닭 농장 HACCP심사항목은 중요도 수준의 구분 없이 동일한 점수(5점)를 부여하고 있으나 본 연구에서는 최근 3년간 지적비율, 위해의 심각도 수준 등 을 고려하여 심사항목별로 중요도 수준을 도출하였고 그 결과에 따라 심사항목의 점수를 차등 부여하도록 하였다. 닭 농장의 선행요건 분야 심사항목(60개)은 중요도에 따라 최대 5 점에서 최소 2점의 점수체계를 구축하여 총 점수가 200점이 되도록 하였으며, HACCP 관 리 분야 심사항목(15개)은 최대 10점에서 최소 5점 체계를 구축하여 총 점수가 100점이 되 도록 개발하였다. 본 연구결과를 현장에 적용할 경우 심사의 객관성을 높여 더욱 안전하고 위생적인 육계 및 계란 생산이 가능할 것으로 예상된다. 이는 나아가 닭 농장 HACCP 제도 의 활성화와 소비자에게 보다 안전한 축산물을 공급할 수 있을 것으로 판단된다.
        53.
        2017.05 서비스 종료(열람 제한)
        전 세계적으로 가금류의 소비가 증가함에 따라, 가금류와 관련된 폐기물 증가해왔다. 이 가금류 관련 폐기물의 지속적으로 처리함과 동시에 에너지 회수를 위하여, 본 연구에서는 이산화탄소 조건하에서 열분해를 진행하였다. 이산화탄소의 영향을 조사하기 위해, 일반적으로 열분해 공정에서 사용되는 질소조건을 기준으로 하여, 열중량 분석, 열분해에서 발생한 가스 및 타르를 분석, 비교하였다. 먼저 열중량 분석은 25℃부터 900℃로 진행하였으며, 분석한 결과에 의하면 650℃까지 물리적인 차이가 없었다. 다음으로 이산화탄소의 화학적인 영향을 조사하기 위해, 열분해(270℃부터 720℃)에서 발생한 주요 가스인 수소, 메탄, 이산화탄소 각각의 농도에 대해 분석하였고, 최종적으로 발생한 타르의 양을 측정하였다. 이산화탄소의 효과로서 일산화탄소가 증가하고 타르발생량이 감소하였다. 이 결과에 의하면, 열분해에서 발생한 VOCs가 이산화탄소 조건에서 더 쉽게 분해되었고, 이에 따라 일산화탄소가 증가한 것으로 보여진다. 본 연구는 잠재적인 지구온난화 가스인 이산화탄소를 이용함으로써 효율적인 에너지회수를 동반한 폐기물을 처리할 수 있는 새로운 방법을 제시한다.
        54.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Biochemical methane potential (BMP) of residual wastes from transesterification was tested to safely recycle carcass via rendering process. The carcass was obtained from a buried site for avian influenza (AI) infected poultry. Rendered lipid generated by a pilot-scale high-pressure rendering process was the main source of transesterification for biodiesel recovery. To test the feasibility of waste-to-energy approach for AI infected carcass, we compared the BMPs of various fractions of rendered materials from the carcass. BMP and specific methanogenic activity results indicate that transesterification waste shows better digestibility than that of rendered lipid, and the digestion performance was comparable to that of liquid residue. Biogas yields of glycerol, rendered lipids, and liquid residue were estimated as 0.11 L/g chemical oxygen demand (COD), 0.06 L/g COD, and 0.17 L/g COD, respectively. Regression analysis support that biogas production rate of glycerol (21 mL/g COD/d) was much faster than that of lipid (7 mL/g COD/d) while that of liquid residue was similar (24 mL/g COD/d). In summary using transesterification waste as a bioresource for bioenergy conversion can be a viable and sustainable option for the complete termination of burial site.
        55.
        2016.11 서비스 종료(열람 제한)
        육류소비는 가축사육의 비약적인 증가를 초래함과 동시에 조류독감과 구제역 등의 전염병 발병으로 인해 오염된 닭, 오리, 소, 돼지 등이 대량 폐사되는 사례가 늘어나고 있다. 이로 인해 폐사축을 처리 및 처분하여 매몰지를 소멸화 하는 방법들이 강구되고 있다. 그 중 렌더링공정을 이용하여 고온 고압 하에서 폐사축을 전처리하여 발생된 지방을 전이에스테르화하여 바이오디젤을 생산하는 방법이 주목 받고 있는데, 이 역시 바이오디젤을 생산할 수 있는 반면 글리세롤이 폐기물로 발생된다는 단점이 있다. 본 연구는 이 글리세롤을 혐기성 소화의 탄소원과 에너지원으로 사용하여 바이오가스로 전환하는 가능성을 평가하기위해 생화학적 메탄 포텐셜(biochemical methane potential, BMP)테스트를 시행하였다. 반응조 COD농도를 1g으로 설정하고 섭씨 37도 배양기에서 혐기성 입상슬러지를 식종균으로 14일 동안 바이오가스 발생을 모니터링한 결과, 글리세롤로 부터 약 50~58 mL/g COD의 메탄수율 획득이 가능함을 밝혔다. 또한 글리세롤의 바이오가스 전환이 7일 이내에 종료되는 것으로 나타났으며, AI 폐사축으로부터 바이오디젤을 생산 후 나온 부산물인 글리세롤을 자원화하는 혐기성소화 시 메탄생성속도는 7.0~8.3 mL/gCOD・d로 나타났다.
        56.
        2015.05 서비스 종료(열람 제한)
        Slaughter of cattle, pigs, and chickens has increased continuously. In particular, slaughter of chickens has been grown up about 150% in 2010 than that in 2003, that is approximately 120,000 tons. All of them are underwent consigned treatment even though those can be used as a resource and an energy source. With this regards, THR (Thermal Hydrolysis Reaction) leads to reduce water content drastically (<30% in sludge cakes). In addition, Dehydrated solid would be re-used as solid fuels (SRF) as well. In this study, We have applied THR to a plant (10 ton/day) on the basis of our lab and pilot results. Water content of sludge cakes showed with a ranges of 30 to 40% after solid-liquid separation. Dairy SRF produced 1.5 ton/day and its heat capacity for SRF has 6,500 kcal/kg. This gave the steam produced about 12 ton/day throughout the plant operation, suggesting that THR system would expect energy savings.
        57.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to determine the effects of mixed Korean red ginseng marc with aluminum sulfate on gas concentration and volatile fatty acid (VFA) in poultry litter during 4 weeks in terms of livestock and environment managements. A total of 240 broiler chicks were randomly allocated to four treatments in four replications and 15 birds per replicate. The four treatments was mixed to rice hull under each pen at 0, 10 g or 20 g red ginseng marc + 90g aluminum sulfate, and 100g aluminum sulfate per kg poultry litter (rice hulls). Carbon dioxide, methane, acetic acid, and propionic acids were measured weekly. The results that could be available include: First, during the experimental period, carbon dioxide emissions were not remarkably different among treatments. Second, no differences were observed among treatments in methane emissions at 2 weeks through 4 weeks, but at 1 week, the reduction in methane emissions was in following order: 100 g aluminum sulfate > 20 g red ginseng marc + 90 g aluminum sulfate > 10 g red ginseng marc + 90 g aluminum sulfate > control. Third, in spite of statistically differences, treatment with 10 g or 20 g red ginseng marc + 90g aluminum sulfate, and 100g aluminum sulfate reduced acetic acid and propionic acid as a function of time, except acetic acid in aluminum sulfate treatment at 2 and 4 weeks. In conclusion, the results indicated that like aluminum sulfate, using 10 g or 20 g red ginseng marc with aluminum sulfate was effective in decreasing methane and propionic acid released from poultry litter.
        58.
        2014.02 KCI 등재 서비스 종료(열람 제한)
        We investigated the effects of sea urchin shell powder on 2 volatile fatty acids, acetic and butyric acid, in poultry litter. A total of 60 1-d-old male broiler chicks (Arbor Acres) were allocated to 2 treatments (basal diet and 1% sea urchin shell powder) with 3 replicates of 10 birds each. During the 4-week experimental period, significant differences in acetic acid and butyric acid concentrations were observed between treatments (P < 0.05), except for acetic acid at 1 week. Additions of 1% sea urchin shell powder resulted in lower acetic and butyric acid concentrations compared to the litter of control birds. We conclude that the sea urchin shell powder used in this study might prove beneficial in reducing environmental pollution caused by poultry litter.
        59.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the effects of sea urchin shell powder on nitrogen characteristics in poultry litter by assigning ninety 1-d-old male broiler chicks (Arbor Acres) to one of 3 treatments (control, 1% sea urchin shell powder, and 1% feed additives) in 3 replicates of 10 birds each. For all treatments, the overall dry matter contents were decreased (P < 0.05) as time increased, except for at 1 week. When compared with controls, the dietary sea urchin shell powder and feed additives for 0 and 3 weeks did influence their TN contents, but not for 1, 2 and 4 weeks. The treatments with sea urchin shell powder and feed additives had a significant (P < 0.05) influence on NH3-N in poultry litter compared with controls. However, at 4 weeks, no marked differences were observed in NH3-N contents among treatments. Treatments with 1% sea urchin shell powder might enhance the value of poultry litter as N fertilizer
        60.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        Slaughter of cattle, pigs, and chickens is continuously increasing. Slaughter of chickens has especially increased by approximately 50% from 2003. The quantity of poultry slaughter waste is currently approximately 120,000 tons/year, and undergoes consigned treatment. Via this process, the waste must be used as a resource and an energy source. For this purpose, the waste volume can be reduced and solid fuel can be obtained from the THR (Thermal Hydrolysis Reaction) that consumes a small amount of energy. In this study, The test was conducted at a reaction temperature of 170-220oC and for 1h at the final temperature. According to the CST (Capillary Suction Time) and TTF (Time to Filter) evaluation, the dehydrating efficiency was good after the temperature reached 190oC, and did not significantly differ at the 190oC and higher reaction temperatures. The heating value of the dehydrated solid product was 7,000-7,700 kcal/kg, and its yield rate decreased from approximately 80% to 60% with the increase in the reaction temperature. The results of the BMP test also showed that the anaerobic digestion efficiency decreased at the reaction temperatures of 200oC and higher. From the overall evaluation of the dehydrating efficiency, solid fuel quality, and anaerobic digestion efficiency during the thermal hydrolysis of poultry slaughter waste, it is concluded that the optimal operating temperature is 190oC.
        1 2 3 4