검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2006.09 구독 인증기관·개인회원 무료
        Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, Al2Cu and Al2CuMg intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.
        2.
        2006.09 구독 인증기관·개인회원 무료
        Powder forging has progressed in three decades through the stages of incubation, growth, and maturity, now accounting for 8% of the 5 B global PM market. In this presentation, a history of the technical development of powder forging will be recounted, from early failed attempts and misconceptions, through seminal academic and industrial research, to technical and commercial success. Discussion covers the contributions of government and industrial funding, fundamental knowledge development, and industrial champions for successful implementation. The focus is on lessons learned that may be beneficial to the transition of other technologies for the powder metallurgy industry.
        3.
        2006.09 구독 인증기관·개인회원 무료
        The powder forging (PF) process is used to produce fully dense powder metallurgy (PM) parts for high performance automotive applications. PF connecting rods have been widely accepted in the US, Japan, and other countries due to higher performance and lower manufacturing costs when compared to conventionally forged steel connecting rods [1]. In order to meet and exceed requirements for higher fatigue strength and better machinability of PF connecting rods, a newly developed machinability enhancer, named KSX, was introduced [2]. A comparison study between powder forged materials prepared with 0.3% MnS and with 0.1% KSX additions showed excellent properties in the case of the mix with KSX.
        5.
        1998.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder forging with a back pressure was investigated for production of automobile and compressor parts made of a rapidly solidified Al-Si alloy powder. Disk-shaped green compacts made of a rapidly solidified Al-Si alloy powder were hot forged, and hubs were formed by loading back pressure on their top. The influences of the back pressure and die temperatures on forgeabiliy and properties of parts made of a rapidly solidified Al-Si alloy powder were examined. This method was also applied to the production of a scroll part. The results of these studies are summarized as follows : 1. A back pressure on the hub top is very effective for consolidation and preventing crack formation in the hub. 2. When a back pressure tess than 98 MPa is applied, the forging pressure increases by the same amount of the applied back pressure. With more than 98 MPa, the forging pressure increases further due to an increased friction at the hub side. 3. Die temperatures higher than approximately 670k are needed in order to consolidate well the hub top without cracks.
        4,000원
        6.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.
        4,000원
        9.
        1997.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.
        4,000원
        11.
        1996.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to obtain homogeneous and high quality products in powder compaction forging process, it is very important to control stress, strain, density and density distributions. Therefore, it is necessary to understand quantitatively the elasto-plastic deformation and densification behaviors of porous metals and metal powders. In this study, elasto-plastic finite element method using Lee-Kim's pressure dependent porous material yield function has been used for the analysis of three dimensional indenting process. The analysis predicts deformed geometry, stress, strain and density distribution and load. The calculated load is in good agreement with experimental one. The calculated results do not show axisymmetric distributions because of the edge effect. The core part which is in contact with the indentor and the outer diagonal edge part are in compressive stress states and the middle part is in tensile stress state. As a results, it can be concluded that three dimensional analysis is more realistic than axisymmetric assumption approach.
        4,000원