검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The concrete silo dry storage system, which has been in operation at the Wolsong NPP site since 1992, consists of a concrete structure, a steel liner plate in the inner space, and a fuel basket. The silo system’s concrete structure must maintain structural integrity as well as adequate radiation shielding performance against the high radioactivity of spent nuclear fuel stored inside the storage system. The concrete structure is directly exposed to the external climatic environment in the storage facility and can be expected to deteriorate over time owing to the heat of spent nuclear fuel, as well as particularly cracks in the concrete structure. These cracks may reduce the radiation shielding performance of the concrete structure, potentially exceeding the silo system’s allowable radiation dose rate limits. For specimens with the same composition and physical properties as silo’s concrete structures, cracks were forcibly generated and then irradiated to measure the change in radiation dose rate to examine the effect of cracks in concrete structures on radiation shielding performance, and in the current state, the silo system maintains radiation shielding performance.
        4,000원
        4.
        2023.11 구독 인증기관·개인회원 무료
        This study focuses on the development of coatings designed for storage containers used in the management of radioactive waste. The primary objective is to enhance the shielding performance of these containers against either gamma or neutron radiation. Shielding against these types of radiation is essential to ensure the safety of personnel and the environment. In this study, tungsten and boron cabide coating specimens were manufactured using the HVOF (High-Velocity Oxy Fuel) technuqe. These coatings act as an additional layer of protection for the storage containers, effectively absorbing and attenuating gamma and neutron radiation. The fabricated tungsten and boron carbide coating specimens were evaluated using two different testing methods. The first experiment evaluates the effectiveness of a radiation shielding coating on cold-rolled steel surfaces, achieved by applying a mixture of WC (Tungsten Carbide) powders. WC-based coating specimens, featuring different ratios, were prepared and preliminarily assessed for their radiation shielding capabilities. In the gamma-ray shielding test, Cs-137 was utilized as the radiation source. The coating thickness remained constant at 250 μm. Based on the test results, the attenuation ratio and shielding rate for each coated specimen were calculated. It was observed that the gammaray shielding rate exhibited relatively higher shielding performance as the WC content increased. This observation aligns with our findings from the gamma-ray shielding test and underscores the potential benefits of increasing the tungsten content in the coating. In the second experiment, a neutron shielding material was created by applying a 100 μm-thick layer of B4C (Boron Carbide) onto 316SS. The thermal neutron (AmBe) shielding test results demonstrated an approximate shielding rate of 27%. The thermal neutron shielding rate was confirmed to exceed 99.9% in the 1.5 cm thick SiC+B4C bulk plate. This indicates a significant reduction in required volume. This study establishes that these coatings enhance the gamma-ray and neutron shielding effectiveness of storage containers designed for managing radioactive waste. In the future, we plan to conduct a comparative evaluation of the radiation shielding properties to optimize the coating conditions and ensure optimal shielding effectiveness.
        5.
        2023.11 구독 인증기관·개인회원 무료
        In the nuclear environment, sensors ensure safety, monitoring, and operational efficiency under various operating conditions. These sensors come in various forms, each tailored to specific purposes, including nuclear safety and security, waste treatment and storage, gas leak detection, temperature and humidity monitoring, and corrosion detection. Ensuring the longevity of sensors without the need for frequent replacements is a vital goal for researchers in this field. This paper explores materials that can act as shields to protect sensors from harsh environmental conditions (high radiation and temperatures) to enhance their lifetime. The types of material that had been explored were divided into categories: metal and non-metal. Fourteen types of metal and seven different plastic materials were studied and focused on their characteristics and current applications. Considering properties like melting point, intensity, and conductivity, plastic materials are chosen to be examined as sensor shielding material. A preliminary experiment was conducted to verify signal characteristics changes by shielding material. Metal material and plastic material each were placed in the middle of the granite and the target sensor. The result showed that when metal is between the granite and the sensor, the density and impedance are higher in granite than in the metal. This leads to signal attenuation and a shift in resonance frequency, while plastic does not. Therefore, PPS (Polyphenylene sulfide) and PAI (Polyamide-imide) have lower density and impedance than granite while also possessing heat, moisture, and radiation resistance for effective shielding.
        6.
        2023.11 구독 인증기관·개인회원 무료
        The objective of this study is development of graphite-boron composite material as a replacement for metal canisters to Improve the heat dissipation and radiation shielding performance of dry spent nuclear fuel storage system and reduce the volume of waste storage system. KEARI research team plan to use the graphite matrix manufacturing technology to pelletize the graphite matrix and adjust the content of phenolic resin binder to minimize pore formation. Specifically, we plan to adjust the ratio of natural and synthetic graphite powder and use uniaxial pressing technology to manufacture black graphite matrix with extremely high radial thermal conductivity. After optimizing the thermal conductivity of the graphite matrix, we plan to mix it with selected boron compounds, shape it, and perform sintering and purification heat treatments at high temperatures to manufacture standard composite materials.
        7.
        2023.11 구독 인증기관·개인회원 무료
        After the Fukushima disaster, overseas nuclear power plants have established conditions for issuing a red alert in the event of fuel damage within the spent fuel pool and they have already implemented conditions for issuing a blue alert when fuel is exposed above the water surface. In South Korean nuclear power plants, a real-time monitoring system is in place to oversee the exposure of spent fuel to the surface within the spent fuel pool. To achieve this, a water level indicator gauge is installed within the spent fuel pool, allowing for continuous real-time monitoring. This paper conducted a comparative assessment of radiation levels from water level monitoring system in two units’ spent fuel pools based on the low water levels (1 feet from the storage rack), utilizing the radiation analysis code (MCNP).
        8.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To ensure radiological safety margin in the transport and storage of spent nuclear fuel, it is crucial to perform source term and shielding analyses in advance from the perspective of conservation. When performing source term analysis on UO2 fuel, which is mostly used in commercial nuclear power plants, uranium and oxygen are basically considered to be the initial materials of the new fuel. However, the presence of impurities in the fuel and structural materials of the fuel assembly may influence the source term and shielding analyses. The impurities could be radioactive materials or the stable materials that are activated by irradiation during reactor power operation. As measuring the impurity concentration levels in the fuel and structural materials can be challenging, publicly available information on impurity concentration levels is used as a reference in this evaluation. To assess the effect of impurities, the results of the source term and shielding analyses were compared depending on whether the assumed impurity concentration is considered. For the shielding analysis, generic cask design data developed by KEPCO-E&C was utilized.
        4,300원
        9.
        2022.10 구독 인증기관·개인회원 무료
        Radiation dose rates for spent fuel storage casks and storage facilities of them are typically calculated using Monte Carlo calculation codes. In particular, Monte Carlo computer code has the advantage of being able to analyze radiation transport very similar to the actual situation and accurately simulate complex structures. However, to evaluate the radiation dose rate for models such as ISFSI (Independent Spent Fuel Storage Installation) with a lot of spent fuel storage casks using Monte Carlo computational techniques has a disadvantage that it takes considerable computational time. This is because the radiation dose rate from the cask located at the outermost part of the storage facility to hundreds of meters must be calculated. In addition, if a building is considered in addition to many storage casks, more analysis time is required. Therefore, it is necessary to improve the efficiency of the computational techniques in order to evaluate the radiation dose rate for the ISFSI using Monte Carlo computational codes. The radiation dose rate evaluation of storage facilities using evaluation techniques for improving calculation efficiency is performed in the following steps. (1) simplified change in detailed analysis model for single storage cask, (2) create source term for the outermost side and top surface of the storage cask, (3) full modeling for storage facilities using casks with surface sources, (4) evaluation of radiation dose rate by distance corresponding to the dose rate limit. Using this calculation method, the dose rate according to the distance was evaluated by assuming that the concrete storage cask (KORAD21C) and the horizontal storage module (NUHOMS-HSM) were stored in the storage facility. As a result of calculation, the distance to boundary of the radiation control area and restricted area of the storage facility is respectively 75 m / 530 m (KORAD21C case), and 20 m / 350 m (NUHOMS-HSM case).
        10.
        2022.05 구독 인증기관·개인회원 무료
        As the decommissioning of nuclear power plants increases, there is an increasing interest in the amounts of radioactive waste. Especially, the radiation dose limit for packaging of radioactive wastes shall not exceed 2 mSv·h−1 and 0.1 mSv·h−1 on contact and at 2 m, respectively in South Korea. The DEMplus provides various environmental geometry and all properties such as materials, absorptions, and reflections and the estimation of the radiation dose rates is based on the radiation interactions of the designed 3D geometry model. With the consideration of the radiation dose rate by using DEMplus and its strategy of packaging plan, the radiation shielding was optimized and estimated in this paper. The modular shielded containers (MSC) with shielding inserted were used for radioactive wastes that require shielded packaging. In order to verify the accuracy of the estimated radiation dose rate by using DEMplus, the estimated results were compared with those obtained using MicroShield. The trends of the estimated radiation dose rates using DEMplus and the estimation of MicroShield were similar to each other. The results of this study demonstrated the feasibility of using DEMplus as a means of estimating the radiation dose limit in packaging plan of the radioactive waste.
        1 2