The use of recycled materials, such as the fine recycled aggregate made from concrete waste and carbon fiber (CF) product of industrial waste, for the manufacture of conductive recycled mortars (CRM), transforms the mortar base cement normally made with cement:sand in a sustainable multifunctional material, conferring satisfactory mechanical and electrical properties for non-structural uses. This action provides ecological benefits, reducing the use of natural fine aggregates from rivers and the amount of concrete waste deposited in landfills resulting from construction waste. In this investigation the effect of the addition of CF on electrical properties in hardened, wet and dry state, electric percolation in dry state and fluidity of the wet mixture of a cement based CRM was evaluated: fine recycled aggregate: graphite powder, CRM specimens with dimensions of 4 × 4 × 16 cm. were manufactured for 3, 7 and 28 days of age and sand/cement ratios = 1.00, graphite/cement = 1.00, water/cement = 0.60 and CF = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% compared to the weight of cement. The results demonstrated the effect of the addition of CF in CRM, reducing fluidity of the mixtures due to the opposition generated by its physical interaction of CF with recycled sand or recycled fine aggregate and graphite powder (GP), in its case, placing the electric percolation percolation at 0.30% and 0.45% of CF for CRM with and without GP, respectively. Increases in electrical conductivity (EC) without the presence of GP are defined by the contact between the CF and the conductive paths formed. In contrast, with the presence of GP, the EC is defined by the contact between the CF and the GP simultaneously, forming conductive routes with greater performance in its EC.
전 세계적으로 건설폐기물에 의한 환경문제에 대한 관심이 증가하고 있다. 이에 따라 건설재료들에 대한 재활용방안 에 대한 연구가 많이 진행되고 있다. GFRP는 최근 구조물의 보강에 많이 사용되는 건설 재료이다. 본 연구에는 GFRP를 분쇄하 여 만든 재활용 GFRP파우더(RGP)의 잔골재 대체 가능성을 검토하고자 하였다. RGP는 GFRP의 제작 시 발생되는 GFRP 잉여물을 분쇄하여 사용하였다. RGP의 잔골재 치환율을 20%, 40% 60% 80%로 설정하였다. RGP가 혼합된 시멘트 모르타르의 재료 성능을 검토하기 위하여 압축강도, 쪼갬인장강도 및 휨 강도를 측정하였다. 실험결과, RGP의 혼입으로 시멘트 모르타르의 기초물성이 증가하는 경향이 나타났다. 본 연구결과는 장기적으로 GFRP의 건설재료로의 재활용을 위한 기초자료로 활용이 가능할 것으로 판단된다.
PURPOSES : The objective of this study is to evaluate the effect of the residual mortar of recycled concrete aggregate on the expansion behavior during alkali silica reaction (ASR).
METHODS: In order to evaluate the net effect of residual mortar on ASR expansion behavior, two aggregate samples with the same original virgin aggregate source but different residual mortar volumes were used. ASTM C1260 test was used to evaluate the ASR expansion behavior of these two aggregates and the original virgin aggregate.
RESULTS: The greater the amount of residual mortar in recycled concrete aggregates, the less is the induced ASR expansion. Depending on the amount of residual mortar in recycled concrete aggregate, the ASR expansion of recycled concrete aggregate may be less than half of that of the original virgin aggregate.
CONCLUSIONS: The residual mortar of recycled concrete aggregate may lead to the under estimation of the ASR expansion behavior of the original virgin aggregate.
Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properies such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical reslstance. However, furnace slag powder is not self-hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcíum hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate mortar using furnace slag and analyze its performance based on the results of an experiment, to provide materials on mortar using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.
Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self-hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate mortar using furnace slag and analyze its performance based on the results of an experiment, to provide materials on mortar using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.
본 연구에서는 분쇄한 순환골재 분말(RAP)을 건설소재로 활용하기 위하여 순환골재 및 RAP의 재료적 특성을 파악하고, 시멘트 대체재로 RAP를 적용한 모르타르의 물리·역학적 특성을 분석하였다. RAP 입도분석결과, 볼밀 시간이 증가함에 따라 0.6mm 입도의 분포량이 증가하고, 조립률은 감소하는 것으로 나타났다. RAP를 치환한 모르타르의 유동성은 Plain 보다 향상되었으며, 이는 RAP를 결합재 대체재로 적용함으로서 잉여수의 증가하고 이로 인해 유동성이 증가된 것으로 판단된다. RAP를 적용한 모르타르의 압축강도 평가 결과, 치환율이 증가함에 따라 압축강도가 낮아지는 경향을 나타내었지만, 약 10%까지는 치환하여 사용가능한 것으로 판단된다. 이상의 연구로부터 분말화한 순환골재는 잔골재 대체재로서도 품질특성을 만족할 수 있는 것으로 나타났으며, 본 연구 범위에서는 결합재 대체재로 약 10% 적용시 유동성 개선 및 강도 확보가 가능할 것으로 판단된다.
This study aimed to describe the mechanism and reaction characteristics of the adhered mortar removal of recycled aggregate (RA) using microwave irradiation (700 W) and a mixed solution of HCl and H2O2. The HOCl concentration increased to 29.7 M at 35oC and 40 min of reaction time without RA in the mixed solution, which shows that HCl reacts with H2O2 to form HOCl and water. However, after nitrogen purging, the HOCl concentration decreased to 2.71 M in 20 min, which proves indirectly that HOCl reacts with HCl to form Cl2 and water. The HOCl concentration decreased from 29.7 M to 1.88 M at 35oC in 40 min with RA in the mixed solution, and the Ca2+ concentration increased to 9,750 mg/L, which demonstrates indirectly that mortar mainly composed of Ca(OH)2 reacts with Cl2 to form Ca(OCl)2 and CaCl2. The reaction rate (k) with microwave heating was about 2.3 times faster than that with conventional heating, and k at a reaction temperature of 50oC was about 1.3 times faster than that at 35oC. The treated RA was improved in density, water absorption, abrasion loss, and absolute volume.
This study aimed to determine adhered mortar content of recycled aggregate (RA) using microwave irradiation (700W)and mixed solution of hydrochloric acid (HCl) and hydrogen peroxide (H2O2). The optimum condition was first to soakRA in tap water for 30 min and then RA was soaked in mixed solution of 30% HCl and 15% H2O2 (HCl:H2O2=1:2) for 70-90min after 15-min microwave irradiation. The mortar of RA in the condition was completely removed within2.3 hrs. Reaction rate (k) with the condition was −0.6408hr−1, which was about 190 times faster than that with HCl only(k=−0.0034hr−1).
This study aimed to completely remove adhered mortar from recycled aggregate (RA) using microwave irradiation (700 W) and mixed solution of hydrochloric acid (HCl) and hydrogen peroxide (H2O2). The optimum condition was first to soak RA in tap water for 30 min and then RA was soaked in mixed solution of 30% HCl and 15% H2O2 (HCl : H2O2 = 1 : 2) for 70-90 min after 15-min microwave irradiation. Therefore, the mortar of RA in the condition was completely removed within 2.3 hrs. Reaction rate (k) with the condition was –0.6408 hr-1, which was about 190 times faster than that with HCl only (k = -0.0032 hr-1).
Effects of recycled fine aggregate on the behavior of cement-based mortar were evaluated with different compressive strengths through experiments. It can be observed that recycled fine aggregate can be useful to fabricate precast concrete products in terms of having mortar strength equivalent to natural aggregate.
고로슬래그 미분말을 순환골재 모르타르 및 콘크리트의 제조에 활용할 경우, 순환골재에서 용출된 Ca(OH)2가 고로슬래그에 대한 자극제 역할을 수행하여 수화반응을 개선할 수 있을 것으로 판단되고 고로슬래그를 통해 알칼리 저감 효과를 얻을 것으로 예상되어 본 연구를 진행하게 되었다.
그 결과 고로슬래그 미분말을 혼입․사용한 순환 잔골재 모르타르는 재령 3일에서는 고로슬래그 혼입율에 따라 강도가 감소하는 결과를 나타냈다. 이는 고로슬래그의 수화반응이 일어나지 않았기 때문으로 판단되며 또한, 순환 잔골재 혼입률에 관계없이 고로슬래그 미분말의 혼입률이 증가함에 따라 재령 3일 측정한 수화활성도도 저하되는 것으로 나타났다.
재령 7일에서는 순환 잔골재에서 용출된 수산화칼슘(Ca(OH)2)이 자극제 역할을 수행하여 고로슬래그 미분말을 혼입한 배합의 압축강도 발현이 천연 잔골재를 사용한 모르타르보다 서서히 증가하는 결과를 보이기 시작하였으며 이로 인해 재령 7일 측정한 고로슬래그 미분말을 단계별로 혼입한 배합의 수화활성도가 고로슬래그를 혼입하지 않은 배합보다 높아지는 것으로 나타났다.
재령 28일에서는 고로슬래그 미분말 혼입률 30% 배합에서는 고로슬래그의 수화반응으로 인해 천연 잔골재를 사용한 배합보다 높은 압축강도를 보이기 시작하였으며 이때 측정한 수화활성도는 천연 잔골재를 사용한 배합과 특별한 차이를 보이지 않았으며, 이는 지속적으로 수산화칼슘(Ca(OH)2)이 공급되지 못하였기 때문으로 판단된다.