검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2011.09 구독 인증기관 무료, 개인회원 유료
        This study investigated whether the addition of porcine sperm cytosolic factor (SCF) at fusion/activation affects in vitro development of porcine parthenogenetic(PA) and nuclear transfer (NT) embryos. To determine the optimum concentration of SCF, control group of oocytes was activated with 0.3M mannitol (1.0 mM CaCl2 ․ 2H2O), other three groups of oocytes were parthenogentically activated with the fusion medium (0.1mM CaCl2 ․ 2H2O) supplemented with 100, 200 or 300 μg/ml SCF, respectively. Matured oocytes were activated with two electric pulses (DC) of 1.2 kv/cm for 30 μsec. The activated embryos were cultured in PZM-3 under 5% CO2 in air at 38.5℃ for 6 days. Oocytes activated in the presence of SCF showed a significantly higher blastocyst rate than control (p<0.05). Apoptosis rate was significantly lower in 100 μg/ml SCF group than other groups (p<0.05). Cdc2 kinase activity in control and SCF treatment group of oocytes was determined using MESACUP cdc2 kinase assay kit at 1, 5, 10, 15, 30, 45 and 60 min after activation. Cdc2 kinase activity was significantly decreased (p<0.05) in SCF group than MII oocytes or control within 5 min. For NT embryo production, reconstructed oocytes were fused in the fusion medium supplemented with 0.1 mM CaCl2 ․ 2H2O (T1), 1.0 mM CaCl2 ․ 2H2O (T2) and 0.1 mM CaCl2 ․ 2H2O with 100 μg/ml SCF (T3). Fused embryos were cultured in PZM-3 under 5% CO2 in air at 38.5℃ for 6 days. Developmental rate to blastocyst stage was significantly higher in T3 than other groups (23.0% vs. 13.5 to 15.2%) (p<0.05). Apoptosis rate was significantly lower in T3 than T1 or T2 (p<0.05). The relative abundance of Bax-α/Bcl-xl was significantly lower in in vivo or SCF group than that of control (p<0.05). Moreover, the expression of p53 and caspase3 mRNA was significantly lower in in vivo or SCF group than that of control (p<0.05). These results indicate that the addition of SCF at fusion/activation might improve in vitro development of porcine NT embryos through regulating cdc2 kinase level and expression of apoptosis related genes.
        4,000원
        5.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        As industry continues to develop, the amount of various recalcitrant substances that cannot be removed by conventional wastewater treatment has increased in modern society. The SCFs (Soluble Cutting Fluids) used in metalworking processes contain many chemical substances, such as mineral oils, anticorrosive agents, extreme-pressure additives and stabilizers, as well as high concentrations of organics. Recently, electrolysis has been expected to become an alternative to conventional processes and to be useful in various wastewater treatments. Electrolysis is a highly adaptable industrial wastewater treatment method, having a high efficiency, short processing time, and simple equipment composition, regardless of the biodegradable nature of the contaminants. The effects of operating time, current density, and electrolyte on COD removal of waste SCFs have been studied using the stainless steel (SUS316) electrode in a batch type reactor. The results were as follows. ① Without electrolytes, when the current density was adjusted to 40 A/m2, 60 A/m2, and 80 A/m2, the removal efficiencies of the COD were 25.0%, 37.7%, and 49.1% after 60 min, respectively. ② In the comparison between NaCl (5 ~ 10 mM) addition and non-addition, the removal efficiency with NaCl was higher than for without after 60 min for all current densities. ③ In the comparison between Na2SO4 (5 ~ 10 mM) addition and nonaddition, the removal efficiency with Na2SO4 showed no significant difference to that with NaCl at all current densities.
        6.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        The mother machine makes the necessary shape by processing materials such as metal. The SCFs are applied to the processing surface when the mother machine processes the material, thereby improving the cutting conditions. SCFs contain high concentrations of organic components and nitrogen compounds, which can cause problems such as eutrophication and algae bloom. Therefore, proper treatment is required. Electrochemical treatment is expected to be an alternative to conventional processes, and to be useful in various wastewater treatments. Moreover, it is an efficient elimination technique for contaminants and has a simple equipment composition. In this study, the removal efficiency of the T-N contained in the waste SCF using electrochemical treatment is analyzed. The electrode was made of titanium and iridium, made into a perforated metal sheet to prevent an imbalance of the sample concentration in the reactor. Experiments were conducted to examine the effects of current density and the concentration of the supporting electrolyte (NaCl, Na2SO4) on removal efficiency. In the cases with 60 A/m2, 80 A/m2, and 100 A/m2 current densities, the removal efficiencies of the T-N contained in the waste SCF were 51.03%, 68.83%, and 79.58%. Comparing between the addition and non-addition of NaCl, the removal efficiency with the addition of NaCl (5 ~ 10 mM) was higher than for no addition at 60 min for all current densities. The addition of Na2SO4 increased the removal rate of the T-N, but it was less effective than NaCl addition.
        7.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        The use of Soluble Cutting Fluids (SCF) is essential in the development of industrial technology. However, it is difficult to decompose biologically due to its high concentrations of organic substances and nitrogen compounds, which interfere with microbial growth. Recently, Advanced Oxidation Processes are being studied both domestically and internationally. Electrolysis is highly adaptable industrial wastewater treatment because it has high removal efficiency and short processing time, regardless of the contaminant’s biodegradable nature. Accordingly, this study shows the characteristics of total nitrogen removal in SCF on the operating time, current density, and electrolytes when using aluminum in a batch-type reactor. The results are as follows: ① Under the condition of without the electrolyte when the current density was adjusted to 40 A/m2, 60 A/m2, or 80 A/m2, the respective T-N removal efficiencies were 71.7%, 80.6%, and 87.2% at 60 min. ② In the comparison for the condition of whether NaCl was added, the removal efficiency of adding NaCl (5 ~ 10 mM) was higher than non-addition at 60 min for all current densities. ③ In the comparison for the condition of whether Na2SO4 (5 ~ 10 mM) was added, the removal efficiency when adding Na2SO4 showed no significant difference compared to non-addition at 60 min for all current densities.
        9.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        An electrochemical treatment has great efficiency for the removal of non-biodegradable material and it has high applicability in wastewater treatment due to its short operating time. The purpose of this study using an electrochemical process is to provide fundamental data on the cutting fluid treatment, which has difficulties in the treatment of nonbiodegradable material. The results are as follows. Experimental data in relation to applied voltage and concentration of NaCl are outlined. With no addition of NaCl, and an applied voltage of 5 V, 10 V, or 15 V for 60 mins, the removal rates of CODMn were 29.87%, 55.32%, and 67.27% for each voltage. The removal rates of CODCr were 39.51%, 70.73%, and 85.37%, respectively. The removal rates of CODMn and CODCr increased with increasing applied voltage. These experimental results showed that the removal rate of COD with varying concentrations of NaCl (0 mM, 5 mM, 10 mM) increased increasing NaCl concentration.