PURPOSES : This study was conducted to prevent slip accidents on manhole covers located on sidewalks and local roads as well as to propose reasonable slip resistance management standards for manhole covers. METHODS : Using field surveys, test groups were classified based on the patterns and wear amounts of the manhole covers. Standards for measuring the equipment and methods for slip resistance were established, and the slip resistance values were compared and analyzed for each manhole cover test group. RESULTS : According to the slip resistance test results, micro-protrusions on the non-slip manhole covers were found to be effective in improving slip resistance. However, in areas without microprotrusions, the improvement in slip resistance was minimal and yielded results similar to those of standard manhole covers. In addition, among the pattern types of standard manhole covers, the radial pattern was found to be the most susceptible to slipping. Under the current wear measurement standards, the change in slip resistance at different wear stages was found to be relatively small. Moreover, manhole covers had the lowest slip resistance among road surface structures, indicating the need to establish management standards for them. CONCLUSIONS : To prevent pedestrian slip accidents on sidewalks and local roads, it is necessary to ensure that the slip resistance standards of manhole covers are higher than those of sidewalks.
PURPOSES : This study aims to analyze and summarize test results related to permeable blocks used for sidewalks and roadways as an alternative to conventional urban road pavement technology, specifically focusing on low-impact development (LID) techniques. Furthermore, it aims to provide reference data on the feasibility of current policy implementation and future policy directions through a longterm analysis of the performance and durability of permeable blocks in sidewalk and roadway construction. METHODS : The research methodology involves (1) conducting a survey on the status and actual conditions of permeability sustainability tests based on the results of permeability persistence tests conducted in Seoul over nine years, from 2013 to 2021; (2) analyzing the differences between the permeability block rating system of Seoul City and that employed by the Ministry of Environment; (3) analyzing the permeability of graded pavement sections in permeable blocks for sidewalks after three years of public use and deriving a regression analysis formula to estimate the maintenance period; (4) analyzing the permeability of pavement sections in permeable blocks for roadways after five years of public use and deriving a regression analysis formula to estimate the maintenance period. RESULTS : This study revealed significant improvements in the performance and quality control of permeable blocks since the implementation of the permeability sustainability test in Seoul in 2013. An analysis of the differences in the permeability coefficient and distribution based on the rating systems of Seoul City and the Ministry of Environment showed that rating system of Seoul City has approximately twice the permeability coefficient quality standard compared to that of the Ministry of Environment. Regression analysis indicated that the firstgrade permeable block was predicted to maintain its permeability for approximately 5.1 years, whereas the third-grade permeable block was predicted to maintain its permeability for approximately 3.1 years. In roadway-permeable block pavements, the first-grade sections maintained excellent quality conditions even after five years, and regression analysis predicted a permeability maintenance period ranging from eight to 17 years. CONCLUSIONS : The correlation analysis of the permeability coefficients based on the common usage period of permeable blocks for sidewalks and roadways presented in this study can provide more accurate estimations of commonality. However, further research under various environmental conditions is required to supplement these findings. Considering the lack of studies on permeable block commonality analysis in Korea, this study highlights the significance of conducting long-term experimental follow-up research to establish commonality prediction formulas for different usage scenarios.
도로협곡에서의 수목식재에 따른 보도 내 교통유발 대기오염도 변화를 살펴보기 위해 오픈소스 전산유체역학 코드 FDS(Fire Dynamics Simulator)를 사용하여 수목 투과지수, 식재 위치 및 유형에 따른 영향을 조사하였다. 광범위한 시뮬레이션을 통해 1) 관목층 만으로만 구성된 사례, 2) 관목층과 아교목층으로 구성된 사례 및 3) 관목층과 교목층으로 구성된 사례를 포함하는 400개의 시나리오 사례 중 399개 사례에 대해 유효한 데이터를 생성하였다. 분석결과, 보도 위에서 관찰되는 평균화된 정상상태 대기오염 농도는 식재유 형과는 무관하게 수목식재 후 약 10% 이상 감소하는 것으로 나타났다. 가장 큰 대기오염 감소효과는 관목층만으로 구성된 사례에서 관찰되었는데 대략 45%까지 감소하는 것으로 나타났다. 이러한 감소효과는 차선에서 인도로 대기오염물질을 직접 수송하는 선회류가 관목층에 의해 유리한 방향으로 변형되는 물리적 과정에 기초한다.
PURPOSES : This study aims to evaluate the applicability of ground penetrating radar (GPR) for surveying utility pipes under sidewalks made of concrete brick and plate-stone block pavements.
METHODS : GPR tests were conducted at two test sections to detect layer boundary and utility pipes under the pavements. The central frequency of the single-channel GPR was 800, 500, 250, and 100 MHz, and the central frequency of multi-channel (8) GPR was 450 MHz. GPR signals were analyzed in terms of 1-D (A-scan) and 2-D (B-scan) profiles.
RESULTS: From the A-scan data analysis, the vertical resolution of the GPR ranged from 7.3 cm for 800 MHz to 133.1 cm for 100 MHz in the concrete brick block pavement and 13.9 cm for 800 MHz to 144.2 cm for 100 MHz in plate stone block pavement. From the B-scan data analysis, 250 MHz to 500 MHz GPR was sufficient to differentiate the layer boundary at a depth of 1.0~1.5 m to detect utility pipes at a depth of 0.5~2.0 m in both block pavements. In the plate-stone block pavement, GPR signal attenuation was greater because of the wire mesh in the concrete layer. Thus, the penetration depth was approximately 80% of the concrete brick-block pavement.
CONCLUSIONS : The penetration depth and vertical resolution of GPR in the sidewalk paved with blocks were comparable to those of roadway pavement. Among the GPR evaluated, the 250 MHz GPR was the most desirable, and the 500 MHz GPR was affordable for the investigation of underground pipes situated up to 2.0~3.0 m under sidewalks.
PURPOSES: This study aimed to measure the skid resistance of the sidewalk in order to find out the relationship between different surface types and skid resistance. By using British Pendulum Tester, skid resistance of sidewalk was measured in a wet after snow-melt, sludgy, and snowy conditions.
METHODS : The skid resistance was measured on surfaces including Concrete Interlocking Block Paving, Colour Asphalt Pavement, Granite Block Paving, Manhole, and Tactile Paving for Visually Impaired. Five trials at each measurement were made, and the average and standard deviation were derived.
RESULTS: The skid resistance measured in wet after snow-melt, sludgy, and snowy conditions for the various surface types are summarized and compared. Reduction rates of skid resistance of sludgy and snowy against wet after snow-melt are also analysed. The skid resistance variation between measurement points which mimic pedestrian route in study site are analysed to check out the consistency of the skid resistance along the sidewalk.
CONCLUSIONS : The study concluded that the skid resistance of sidewalk surfaces varied depending on the surface types and weather conditions. Secondly, reduction rates of skid resistance according to weather changes are varied depending on the surface types, Thirdly, consistency of skid resistance along the pedestrian route is hardly acquired in the study site at least. So, future study on the consistency evaluation for skid resistance along sidewalk is strongly recommended.
In recently, a growing concern for the health of urban residents increased interests in a variety of outdoor activities simply be done in terms of cost and time. They are specially interested in low-impact and safe exercises around residential or working area. Walking is the one of easily doing exercise in daytime or nighttime near residential area. The sidewalks of boulevard near the residential area is the best place for exercise because of easy access and the green space with roadside trees. However, if the nighttime is not guaranteed the proper lighting condition, the possibility of exposure to crime and the threat to pedestrian safety can be increased. Because roadside trees are one of the potential obstacle for lighting condition, supplementary lightings are important to mitigate interruption for safety. To meet such a need, the purpose of this study is to propose a simulation approach which improves lighting condition on sidewalks of boulevard with variety of roadside trees. To do so, the simulation approach is applied for analyzing the interrupted condition by classified five standard types of roadside trees considering the growth of them and finding optimal layout of supplementary luminaires by lighting types. The results of this approach shows that it is useful for assessing the safety of pedestrian in nighttime.