검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrical resistances of small-sized activated carbon fiber (ACF) fabric (specific surface area: 1244.7 m2/ g, average pore diameter: 1.92 nm) and felt (specific surface area: 1321.2 m2/ g, average pore diameter: 2.21 nm) sensors were measured in a temperature and humidity controlled gas chamber by CO2 adsorption at different surrounding CO2 concentrations (3000–10,000 ppm). The electrical resistances of ACF sensors decreased linearly as the increase of temperature and decreased exponentially as the increase of humidity in the ambient atmospheric chamber. The electrical resistances of ACF rapidly decreased within 4 s and an equilibrium state was achieved within 10 s due to the very rapid CO2 adsorption at room temperature and 40% humidity. Comparing the difference in electrical resistance values measured during injection of similar concentrations of CO2 after reaching the equilibrium value, the fabric exhibited a significant change, whereas the felt did not, even though it had a relatively larger specific surface area. The reason is that micropore volume greatly affected the amount of CO2 adsorbed, whereas the specific surface area did not affect it as much. Therefore, ACF fabric with large micropores (> 2.0 nm) can be developed and used as CO2 sensors in small rooms such as a passenger vehicles.
        4,000원
        2.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, there has been growing interest in harmful substances released from household items such as volatile organic compounds (VOCs) and this has increased people’s environmental awareness. In this study, adhesives and manicures were used as samples of indoor household goods and formaldehyde emission and tested over time under temperature conditions of 15oC, 25oC, 35oC, and 45oC. The small chamber method as the indoor air quality process test method was employed and used to evaluate the concentration of formaldehyde emissions. As a result, formaldehyde emissions gradually decreased over time in both tests using adhesives and manicures. The cumulative emission showed a logarithmic function over time, and the formaldehyde can be released for longer periods of time at lower temperature conditions. The logarithmic value and response time showed linear relationships, and it can be inferred that the formaldehyde was released from the sample through the first order reaction. Furthermore, the relationship between temperature and velocity constants which was determined using the Arenius linear equation showed that the reaction rate of formaldehyde can be estimated by a temperature change.
        4,200원
        3.
        2006.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to optimize an emission test method for building materials and to understand the characteristics of total volatile organic compounds (TVOC) and carbonyl compounds emission from building materials, especially solid-phase building materials, using a small chamber test method. As a result of the evaluation for small chamber system, temperature and humidity was maintained constantly at 24.5℃, 50.2%. The background concentration of total volatile organic compounds and formaldehyde were also controlled below 20 ㎍/㎥ and 0.5 ㎍/㎥, respectively. Air leakage of emission test chamber and the duplicate precision between two emission test chambers were satisfied. As a result of evaluation for sampling and analysis system (such as the breakthrough test), repeatability of response factor, and retention time in GC/MS and HPLC, desorption efficiency, method detection limits were excellent. The concentration of total volatile organic compounds emitted from wallpapers (made of PVC) was higher at 25℃ than at 23℃. Also, the concentration of formaldehyde emitted from floorings made from non-PVC (wood-based) was higher at 25℃ than at 23℃. On the other hand, there was not a significant difference between the concentrations of total volatile organic compounds emission from wallpaper (made of PVC) which was stored for 2 weeks at 25℃ and 4℃ with tight sealing. In conclusion, emission characteristics of TVOC and formaldehyde from solid-phase building materials would be expected to apply to the plan for the management of indoor air quality.
        4,800원