The ZnO–Na2Ti6O13 composites were synthesized by facile solution combustion method with different molar concentrations of sodium titanate which is prepared by hydrothermal route. The formation of the composites was confirmed by the X-ray diffraction (XRD) analysis. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) results revealed that the synthesized composites exhibit porous morphology, whereas the pristine Na2Ti6O13 nanoparticles have whisker like morphology. Diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) studies were utilized to compute the bandgap and the presence of defects in the composites respectively. The photocatalytic activity of ZnO–Na2Ti6O13 catalyst was investigated through the degradation of 4-nitrophenol under solar light over a period of 180 min and the composite with 0.05 M of Na2Ti6O13 showed higher degradation efficiency (96%) than the other concentrations of Na2Ti6O13 and pristine ZnO. The reduced bandgap, high charge transfer, more oxygen vacancies and the production of high superoxide anion radicals have profound effect on the higher photocatalytic efficiency of the composite with 0.05 of M Na2Ti6O13.
분화국화 ‘솔라에그(등록번호 8569)’는 2015년 경상남도농 업기술원 화훼연구소에서 분홍색 ‘포인트에그’를 감마선 처리 를 하여 육성하였다. 특성검정과 형질 안정성은 2017년에서 2018년까지 3회를 수행하였다. ‘솔라에그’는 분홍색 꽃잎(54D) 과 적자색 중심부(59B)를 가진 ‘아네모네’ 형태이다. 꽃과 잎 색깔과 모양에서는 ‘솔라에그’와 ‘포인트에그’ 간의 차이는 거 의 없었다. ‘솔라에그’의 식물체와 개화 연구에서 조명과 억제 재배를 했을 때 약 42일로 개화소요시간은 비슷했다. 그러나 초장, 꽃 크기, 꽃 중심부 크기와 착화수에서 ‘포인트에그’와 비교했을 때 차이가 있었다. 특히, 자연재배조건에서 꽃 크기 는 4cm으로 대조품종과 비교했을 때 컸다. 국화 품종에서는 꽃의 크기가 상업적으로 중요한 형질이다. ‘솔라에그’의 표현 형과 개화기 연구와 비교하여 배수성, RAPD, 세포 크기 및 수 분석을 하였다. 이들 결과에서는 표현형의 변화는 작은 유전 적 변이와 세포 분열 증가와 관련이 있을 것이라고 추정하고 있다. 중형 크기의 ‘솔라에그’는 분화국화로 이용되며 농가의 평균소득 증대를 기대할 수 있다.
In this study, a flat-type photocatalytic reactor is applied under solar irradiation for simultaneous treatment of target pollutants: reduction of Cr(VI) to Cr(III) and oxidation of EDCs (BPA, EE2, E2). An immobilized type of photocatalyst was fabricated to have self-grown nanotubes on its surface in order to overcome limitations of powdery photocatalyst. Moreover, Ti mesh form was chosen as substrate and modified to have both larger surface area and photocatalyst content. Ti mesh was anodized at 50V and 25°C for 30min in the mixed electrolytes (NH4F-H2O-C2H6O2) and annealed at 450°C for 2 hours in ambient oxygen to have anatase structure. Surface characterization was done with SEM and XRD methodologies. Fabricated NTT was applied to water treatment, and coexisting Cr(VI) and organics (EDCs) enhanced each other's reactions by scavenging holes and electrons and thus impeding recombination. Also, several experiments were conducted outdoor under direct sunlight and it was observed that both solar-tracking and applying modified photocatalyst were proven to enhance reaction efficiency.
Shelter that communication equipment and on-equipment material are mounted on is transported by airplane, vehicle and has a function such as waterproof and shielding EMI. Maintaining proper inside temperature of shelter is important in order to operate equipment. Accordingly proper cooling capacity of cooling equipment which installed on the shelter is important for equipment and operator. To calculate proper cooling capacity, There are some considerations such as environmental factors and equipment in the shelter. In Korea solar irradiation and outdoor temperature is difference in accordance with geological characteristic. Also electric equipment mounted on the shelter is increased by development of technology. But the capacity of air conditioner is not changed thus there is a problem about operating equipment. In this paper, Compare cooling capacity of shelter when using air conditioner that is not enough cooling capacity and calculate proper cooling capacity to consider geological solar irradiation and outdoor temperature.