검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.11 구독 인증기관·개인회원 무료
        Wasteform is the first barrier to prevent radionuclide release from repositories into the biosphere. Since leaching rates of nuclides in wasteform significantly impact on safety assessment of the repository, clarifying the leaching behavior is critical for accurate safety assessment. However, the current waste acceptance criteria (WAC) of the Gyeongju repository only evaluates leachability indexes for Cs, Sr, and Co, which are tracers for nuclear power plant waste streams. Furthermore, ANS 16.1, the current leaching test method used in WAC, applies deionized water (DI) as leachant. However, the interactions between wasteform and groundwater environment in the repository may not be reflected. Therefore, it is necessary to review the current leaching test method and nuclides that may require the extra evaluation of leachability beyond the Cs, Sr, and Co. Tc and I are key nuclides contributing to high radioactive dose in safety assessment due to their high mobility and low retardation factor. The groundwater conditions within the repository, such as pH and Eh significantly affect the chemical form of Tc and I. For example, Tc in H2O system tends to form hydroxide precipitates in neutral pH condition and TcO4 - in strong alkaline environments according to the Pourbaix diagram. In case of I, it generally exists in the form of I-, while it exists as IO3 - as Eh increases. Although the current leaching test at the Gyeongju repository applies DI as a leachant, the actual repository is expected to have a highly alkaline environment with a substantial amount of various ions in the groundwater. Consequently, the leaching behavior in the ANS 16.1 test and the actual disposal condition is different. Thus, it is necessary to analyze the leaching behavior of Tc and I with reflecting the actual disposal environment. In this study, the leaching behavior of Tc and I is investigated by following ANS 16.1 leaching test method. The solidified waste specimens containing 10 mmol of Re and I were manufactured with cement, which is widely used as a solidification material. Re was applied instead of Tc, which has similar chemical behavior to Tc, and NH4ReO4 and NaI were used as surrogates for Re and I. As a leachant, deionized water and cement-saturated groundwater were prepared and the concentration of nuclides in the leachant is analyzed by ICP-OES. As the result of this study, experimental data can be applied to improve the WAC and disposal concentration standards in the future.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Low- and intermediate level waste (LILW) repository in Gyeongju, Korea is in operation and the radioactive waste should satisfy the waste acceptance criteria (WAC) of the repository. Among the WAC of the Gyeongju LILW repository, the leachability index criterion is considered to be the criterion that is directly related to the isolation of the radionuclides from biosphere. Cesium, strontium, and cobalt should satisfy the leachability index larger than six by following the ANS 16.1 leaching test method. Several research were performed for the leachability index of Cs, Sr, and Co by following the ANS 16.1 leaching test method. However, the test condition of the previous research is expected to be different to the condition of the actual waste. Due to the radioactivity of the radionuclide such as Cs, Sr and Co, most of the research applied the surrogate of those radionuclides. The concentration of those nuclides was generally measured by the inductively coupled plasma (ICP) equipment, however, high concentration compared to the disposal limit of those nuclides due to the detection limit of the ICP was applied. From the Freundlich and Langmuir adsorption isotherms, the adsorption of the nuclides differs according to the concentration of the nuclides. As the leachability index of the nuclides is affected by the adsorption of the nuclides on the binding material, the effect of nuclide concentration is expected to be not ignorable. Therefore, the leachability index difference according to the nuclide concentration should be compared to avoid over- or underestimation of the leachability index. In this study, the difference in the leachability index according to the concentration of nuclides is aimed to be checked. Cs, Sr, and Co, which should satisfy the leachability index criterion in the WAC of the Gyeongju repository, were selected as target nuclides. Three concentrations were selected to compare the leachability index: 0.1 mol, 0.001 mol and below the regulatory exemption concentration. The concentration of non-radioactive nuclides in the leachant was measured by ICPOES and ICP-MS while the concentration of radionuclides was measured by HPGe. The result of this study can be applied as background data enhancing the WAC or disposal concentration limit of the radionuclides in Gyeongju LILW repository.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Several tests should be performed to estimate the structural and chemical stability of the radioactive waste. Among the tests in Gyeongju LILW repository, the leaching test which follows ANS 16.1 standard test method should be conducted for Cs, Sr, and Co radionuclides and must satisfy leachability index larger than 6 which applies deionized water as a leachant. However, the expected leachant inside the silo is groundwater that contains various ions and a high pH condition is predicted due to the concrete structures inside the silo. According to the chemical environment of the leachant, the chemical form of the radionuclides varies from precipitate to ion. Cobalt precipitates when the leachant has high pH environment which is similar condition to the cement-saturated leachant. Unlike the cobalt, cesium is preferred to exist as ion in the high pH condition. Therefore, the significant effect of the chemical environment of the leachant on the leachability of the radionuclides should be considered for the waste acceptance criteria of the radioactive waste repository. From the ‘NRC, Technical position on the waste form, rev1’, the leaching test method should follow the ANS 16.1 methods by using deionized water as leachant, however, a new leachant showing more aggressive leachability can be applied instead of deionized water. In the other hand, ASTM C1308 leaching test method recommends applying actual groundwater of the repository as a leachant. FT-04-020, the leaching test method of France, suggests the ion composition of the groundwater including the pH value. Therefore, the adequacy of using deionized water as leachant for the leaching test method of Cs, Sr, and Co should be re-examined. In this study, the leaching behavior of Cs, Sr, and Co under the several leachant types is estimated. The cement solidified specimen containing single Cs, Sr, and Co were manufactured. The leaching test following ANS 16.1 was performed by applying deionized water, simulated groundater, and cement-saturated groundwater. As a result, a leachability index difference according to the leachant type was discussed. The result of this study is expected to be a background data that helps understanding the actual leaching behavior of the Cs, Sr, and Co in the Gyeongju LILW repository.
        4.
        2022.10 구독 인증기관·개인회원 무료
        We established pretreatment method of solidified cement ion-exchange resin samples generated before 2003 in nuclear power plants for measurement of non-volatile radionuclide activity. A microwave digestion system (MDS) with mixed acid (HCl-HNO3-HF-H2O2) was used to dissolve cement and to desorb non-volatile elements such as Ce, Co, Cs, Fe, Nb, Ni, Re, Sr and U from mixed ion-exchange resin. The content of Ce, Co, Fe, Nb, Ni, Re, Sr, U and Cs after pretreatment of cement plus mixed ion-exchange resin was measured by ICP-AES and ICP-MS, respectively. As iron and strontium are also present in cement, their content after dissolving a certain amount of cement was measured by ICP-AES. All elements except Nb were quantitatively recovered. Especially since the Nb recovery was low at 72.0±2.5%, the MDS following addition of the mixed acid to the resin was operated once more for desorbing Nb from it. Finally the recovery of Nb was over 95%. This sample pretreatment method will be applied to solidified cement ion-exchange resin samples generated in nuclear power plants for assessment of radionuclide inventory.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Low-and intermediate level waste (LILW) should be solidified and satisfy the waste acceptance criteria (WAC) to be disposed of in the LILW repository. The LILW should be uniformly solidified and should maintain its structural stability under the expected condition according to the WAC. Compressive strength of cement solidified waste should satisfy at least 3.44 MPa to be disposed of in the repository. In addition, its compressive strength should satisfy at least 3.44 MPa after the irradiation, immersion and leaching test. The compressive strength test and dimension of test specimen differ according to countries. However, measured compressive strength of solidified waste is affected by geometry of specimen and test condition. Diameter, ratio between diameter and height, and porosity are one of factors that affect to the compressive strength of cement solidified waste. Generally, specimen with larger diameter shows higher value of measured compressive strength. The ratio of height and diameter shows similar tendency to the diameter while larger porosity generally lowers the compressive strength. In other hands, higher compressive strength is expected when the loading rate is higher during the compressive strength test. U.S. is applying loading rate from ASTM C39 (0.25±0.05 MPa) for the compressive strength test while Korea is applying loading rate from KS F 2405 (0.6 MPa·s−1). France applies loading rate following FT-02-010 (0.5 MPa·s−1) for cement solidified waste. As the measured compressive strength increases when the loading rate increases, the effect of loading rate to the compressive strength of cement solidified waste should be assessed by quantification and consider its effect on the sight of regulation. In this study, the effect of geometric parameters of specimen and test condition to the compressive strength are checked by manufacturing specimen by solidifying mock sludge waste with cement. To prevent increasing amount of secondary waste, effects of ratio of height and diameter and porosity to the compressive strength are checked while diameter value is fixed. For loading rate, loading rate from ASTM C39 and KS F 2405 were compared. Existence of significant variance of measured compressive strengths of cement solidified waste are check by performing statistical analysis. Finally, by analyzing the relationship between test condition and measured compressive strength, the test method that measures the compressive strength conservatively is aimed to be derived.
        6.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The decommissioning of a nuclear power plant generates large amounts of radioactive waste, which is of several types. Radioactive concrete powder is classified as low-level waste, which can be disposed of in a landfill. However, its safe disposal in a landfill requires that it be immobilized by solidification using cement. Herein, a safety assessment on the disposal of solidified radioactive concrete powder waste in a conceptual landfill site is performed using RESRAD. Furthermore, sensitivity analyses of certain selected input parameters are conducted to investigate their impact on exposure doses. The exposure doses are estimated, and the relative impact of each pathway on them during the disposal of this waste is assessed. The results of this study can be used to obtain information for designing a landfill site for the safe disposal of low-level radioactive waste generated from the decommissioning of a nuclear power plant.
        4,000원
        9.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        우라늄 토양 및 콘크리트 폐기물의 동전기 제염 후 방사성폐기물의 시멘트 고화특성을 분석하기 위하여, 시멘트 고화 유동성 시험을 수행하고 시멘트 고화 시료를 제작하였다. 시멘트 고화시료에 대하여 압축강도, pH, 전기전도도, 방사선조사 효과 및 부피증가를 분석하였다. 방사성폐기물의 시멘트 고화의 작업 적정도는 175~190% 정도였다. 시멘트 고화시료의 방사선 조사 후 압축강도는 방사선 조사 전 압축강도 보다 약 15% 감소하였으나, 한국원자력환경공단 인수기준 (34 kgf·cm-2)을 만족하였다. 동전기 제염 후 방사성폐기물의 시멘트 고화 시료에 대한 SEM-EDS 분석결과, 알루미늄상은 시멘트와 잘 결합 한 형상을 나타낸 반면, 칼슘상은 시멘트와 분리된 형상을 나타내었다. 방사성폐기물의 시멘트 고화 부피는 시멘트에 대한 폐기물의 배합과 수분량에 따라 다르게 나타났다. 방사성폐기물의 시멘트 고화 부피(C-2.0-60)는 약 30% 증가였으며 동전기 제염 후 생성된 방사성폐기물의 영구처분은 적절하다고 판단되었다.
        4,000원