검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this paper, the packing degrees of binary granular mixtures under vibration compaction were simulated by using DEM with spherical particles to evaluate the applicability of the DEM for aggregate packing degree estimation. METHODS: The packing degrees of fine particles, coarse particles, and their mixture with different fine particle fractions were evaluated in DEM simulation for given various material property conditions. In order to check the validity of estimated packing degrees of particle mixtures, analytical model such as Furnas model that is capable of considering wall effect and loosening effect. RESULTS : DEM with spherical particles showed good agrement with analytical solution in terms of the packing degrees of binary granular mixtures with various fine particle fractions for most of conditions. Also, it was found that not the vibration amplitude but the ratio of particle diameter with vibration amplitude should be considered to explain the susceptibility of particle packing degree with vibration amplitude for the same acceleration condition and that the reduction in elastic modulus to shorten computational simulation time should be carefully considered when the packing degree is the most important concern. CONCLUSIONS: It was concluded that DEM with spherical particles are good enough to estimate the packing degree of binary granular particles for most of conditions. However, the effect of inter-particle frictions between fine and coarse particles have to be studied further in order to clarify the issue relating poor predictions for high inter-particle friction conditions.
        4,000원
        3.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (γ-Al2O3) layer generated in the initial state. The γ-Al2O3 layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the γ-Al2O3 layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.
        4,000원
        4.
        2014.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A spherical Sr4Al14O25:Eu2+ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was 1,100˚C. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the 4f65d→4f7 electronic transitions of Eu2+. The critical quenching-concentration of Eu2+ in the synthesized Sr4Al14O25:Eu2+ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.
        4,000원
        5.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        BaTiO3 powders were prepared by sol-gel method from different concentration of KOH aqueous solution and Ba/Ti molar ratio. Particle shape, size and crystal structure of prepared BaTiO3 powders were analyzed by SEM, XRD, and FT-IR. As the result of KOH concentration changing, spherical particles were obtained by condition more than 3 M and particle size decreased as concentration increasing. Different appearance showed between dried and sintered powders against changing of Ba/Ti molar ratio. In case of dried powders, the crystallinity decreased as molar ratio increasing. On the other hand, increased as molar ratio increasing in case of sintered powders.
        4,000원
        7.
        2006.09 구독 인증기관·개인회원 무료
        We newly designed and manufactured a new arranging system for a three-dimensional artificial crystal of monosized micro particles. In this system, a robotic micro-manipulator accurately locates the spherical particle onto the lattice point, and subsequently fiber lasers micro-weld the contact points between the neighboring particles. Actually, one- and two-dimensional arrays were constructed using monosized tin particles with the diameter of 400 m. Moreover, due to optimization of the process parameters, we successfully constructed the artificial crystals of simple cubic and diamond structures. In particular, the diamond structure which can represent a large photonic band gap is expected to progress toward a practical photonic crystal device.
        8.
        2006.04 구독 인증기관·개인회원 무료
        Mono-sized silicon particles were effectively fabricated by a novel way named pulsated orifice ejection method (POEM). The particles are with very narrow particles size distribution and very small standard deviation of mean particle size. There are two different types spherical silicon particles were found. One consists of many grains mainly in random boundaries. The other consists of two or three grains with only twin orientation relationships, even single crystal in cross-section was also found within this type of spherical silicon particles.
        9.
        2006.04 구독 인증기관·개인회원 무료
        Three-dimensional artificial crystals with periodicity corresponding to terahertz wave lengths were fabricated by self-assembling monosized metal spherical particles. The metal crystals were weakly sintered to utilize them as templates. The metal templates were inverted to air spheres crystal embedded in dielectric resin though infiltration and etching. The resulting resin inverted crystals clearly presented the photonic stop gaps within terahertz wave region and the frequencies of the gaps were confirmed to agree well with calculation by plane wave expansion method.
        10.
        2006.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원자력 발전소의 증기발생기 슬러지 중에서는 이온교환수지가 발견되어서는 안 된다. 원자력 발전소의 증기발생기 슬러지 시료 중에서 발견되어 이온교환수지 입자로 의심되는 구형 입자들의 특성을 측정하였다. 미세조작기술을 이용하여 광학현미경으로 입자 크기 분포를, EPMA로 구형입자의 성분을, 그리고 IR 분광 스펙트럼 비교에 의하여 이온교환수지 여부를 조사하였다. 슬러지의 입자 크기는 1 내지 이었으나 구형 입자는 이었다. 슬러지의 주요 불순원소가 Si, Al, Mn, Cr, Ni, Zn, 그리고 Ti이었으나 구형 입자는 Si, Cu, Zn 이었다. 주성분은 두 경우 모두 철이었다. 구형 입자의 IR 분광스펙트럼은 증기발생기 취출수 정화계통에서 사용하는 이온교환수지의 스펙트럼과 비교했을 때 서로 일치하지 않음을 보여주었다. 이 결과들은 증기발생기 슬러지 시료 중에서 발견된 구형 입자가 이온교환수지는 아니며 일반적인 슬러지가 생성되는 과정에서 작은 슬러지 입자들이 크게 뭉쳐서 생성된 것임을 나타내고 있다.
        4,000원