검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to make a generalized analytical based on the proposed experiments on reinforced concrete(RC) partially infilled frames by U-type precast concrete(PC) wall panels with openings. RC frame and PC wall panels were connected with different strengths. Therefore, we developed modified strut-tie model(STM) with two seismic retrofitting specimens and conducted a nonlinear analysis by using a computer analysis program. Based on the test results, truss member of modified STM was designed, applying the strut-tie model theory of ACI 318M-11 Appendix- A. As a result, the modified STM analysis results were very similar to the experimental results. As a result of the load-displacement curve comparison, the failure load were similar within 5∼17% of error range. In particular, the experimental results and the results of modified STM analysis show that the failure behavior almost matched.
        4,200원
        2.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cyclic loading test was performed on the partially infilled reinforced concrete(RC) frames by L-type precast concrete(PC) wall panels with the connections of two different strength. Based on the results of experimental test, the nonlinear analysis was practiced with modified strut-tie model(STM) method by using a computer program. Truss member of modified STM was designed, applying the strut-tie model theory of ACI 318M-11 Appendix-A. Modified STM was designed with two ways according to the test result. PC wall panel and RC frame were assumed to composite when push loading applied. The PC and RC structures were also assumed to behave non-composite and those two structures connected with link(top connector) when pull loading applied. The connection was designed by using elastic link of program. The results of analytical modified STM process generally conform to the experimental results. The failure load and the failure mode of the specimens could be predicted using modified STM. The ratio of failure load measured in specimens to analytical values were between 0.83∼1.16. The member or connection which was failed in experiment yield in the results of modified STM. The failure mode perfectly matched.
        4,500원
        3.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Modified dapped end, precast prestressed double-tee slabs were considered in this research. It can facilitate insertion of service ducts at the dapped ends. The total depth of the floor slab may be reduced. In addition, the underside of the double-tee slab showed simpler appearance. Static three-point shear loading test was performed on full-scale specimens. And three modified single-tee slabs were analyzed by strut-tie model method. The specimen failed during the test in the same location as predicted by the strut-tie analytical model. The analysis of experimental results in comparison to the analysis results revealed that the experimental failure loads manifested 108% of analytical failure loads on the average.
        4,000원
        5.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        뼈대구조물의 강절점영역을 설계하기 위해서는 휨모멘트의 작용방향에 따른 절점영역 내부의 응력변화를 정확히 예측하는 것이 매우 중요하다. 본 연구에서는 다양한 형태의 헌치를 갖는 강절점영역의 설계에 있어서 현행의 도로교설계기준이 유용한지에 대해 검토하였다. 또한 선형탄성유한요소해석을 통해 휨모멘트의 작용시의 헌치를 갖는 절점영역내부의 응력상태를 파악한 다음, 이를 바탕으로 스터럿-타이모델을 제안하였다. 본 연구를 통해 제안한 스터럿-타이 모델은 선형탄성유한요소와 동등수준의 정확도를 가지는 것을 확인하였고, 다양한형태의 헌치를 갖는 강절점 영역의 보강철근 설계에 유용할 것으로 사료된다.
        6.
        2012.11 서비스 종료(열람 제한)
        In this study, the strut-tie model used for the analysis and design of the anchorage zone of the PSC modular bridge by comparing with the result of the approximate analytical method. The result shows that the bursting force obtained by approximate analytical method were increased about 2 times in comparison with the result of strut-tie model.
        7.
        2012.11 서비스 종료(열람 제한)
        To introduce how to design the shear wall for strut and tie model, and to secure the strength of shear wall by using Prestressing element, to control at working load condition. also to evaluate the performance of shear wall's capacity.