검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 54

        21.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon nanofiber was produced from the Areca catechu husk as a supercapacitor electrode, utilizing a chemical activation of potassium hydroxide (KOH) at different concentrations. One-stage integrated pyrolysis both carbonization and physical activation were employed for directly converting biomass to activated carbon nanofiber. The morphology structure, specific surface area, pore structure characteristic, crystallinity, and surface compound were characterized to evaluate the influence on electrochemical performance. The electrochemical performance of the supercapacitor was measured using cyclic voltammetry (CV) through a symmetrical system in 1 M H2SO4. The results show that the KOH-assisted or absence activation converts activated carbon from aggregate into a unique structure of nanofiber. The optimized carbon nanofiber showed the large specific surface area of 838.64 m2 g−1 with the total pore volume of 0.448 cm3 g−1, for enhancing electrochemical performance. Beneficial form its unique structural advantages, the optimized carbon nanofiber exhibits high electrochemical performance, including a specific capacitance of 181.96 F g−1 and maximum energy density of 25.27 Wh kg−1 for the power density of 91.07 W kg−1. This study examines a facile conventional route for producing carbon nanofiber from biomass Areca catechu husk in economical and efficient for electrode supercapacitor.
        4,300원
        22.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research on Graphene and its importance in the field of energy conversion and storage devices such as fuel cells, batteries, supercapacitors and solar cells has gained momentum recently. It is studied to be the most suitable electrode material for enhanced performance of supercapacitors in terms of charge–discharge cycles, specific capacitance, high power and energy densities and so on, specifically due to its high conductivity and large theoretical surface area. Unfortunately, it posits lot of challenges due to its irreversible stacking between the individual sheets resulting in the decrease in the Specific Surface Area (SSA) compared to the theoretically reported values. Numerous studies have been carried out to prevent this stacking in order to increase the surface area, thereby being a more suitable material for the manufacture of electrodes for supercapacitors as its capacitance greatly depends on the electrode material. To solve this problem, the conversion of two-dimensional graphene sheets to three-dimensional crumpled graphene structure has been verified to be the most effective approach. The study of crumpled graphene has been one of the recent trends in the field of energy storage applications in consumer electronics and hybrid vehicles as the process of crumpling can be controlled to suit the prospective device applications.
        5,400원
        23.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertically Aligned Carbon Nanotubes (VACNTs)-coated flexible aluminium (Al) foil is studied as an electrode for supercapacitor applications. VACNTs are grown on Al foil inside thermal Chemical Vapor Deposition (CVD) reactor. 20 nm thick layer of Fe is used as a catalyst while Ar, H2 and C2H2 are used as precursor gases. The effect of growth temperature on the structure of CNTs is studied by varying the temperature of CVD reactor from 550 °C to 625 °C. Better alignment of VACNTs arrays on Al foil is recorded at 600 °C growth temperature in comparison to other processing temperatures. Cyclic voltammetry results shows that VACNTs-coated Al foil has a specific capacitance of ~ 3.01 F/g at a scan rate of 50 mV/s. The direct growth of VACNT array results in better contact with Al foil and thus low ESR values observed in impedance spectroscopy analysis. This leads to a fast charge–discharge cycle as well as a very high value of power density (187.79 kW/ kg) suitable for high power applications. Moreover, wettability study shows that the fabricated VACNT electrode has a contact angle of more than 152° which signifies that it is a superhydrophobic surface and hence shows lower specific capacitance in comparison to reported values for VACNT array. Therefore, it is necessary to develop suitable post-processing strategies to make VACNTs hydrophilic to realize their full potential in supercapacitor applications.
        4,000원
        24.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, special attention of energy researchers has been paid to application of polymer–carbon dots composite in energy storage systems. In this work, for the first time, we introduced a combination of polyaniline, carbon dots, polypyrrole and graphene as high performance supercapacitor. Synergistic effect of conductive polymers combined with specific properties of graphene and carbon dots improved the electrochemical performance of supercapacitor. Carbon dots was prepared from carrot juice hydrothermally as a biomass carbon source and polyaniline–carbon dots was synthesized via in-situ polymerization. Electrochemical performance of polyaniline with different carbon dots content was investigated and nanocomposite of polyaniline with 10 wt% carbon dots was selected to mix with polypyrrole–graphene to obtain a high potential window supercapacitor. The as-prepared composite was characterized by several spectroscopic and microscopic techniques. The electrochemical properties of this electrode were studied by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy techniques. A polyaniline–carbon dots (10%)/polypyrrole–graphene has showed the maximum specific capacitance of 396 F g− 1. Value of specific capacity remained at 62% under the current density of 5 A g− 1.
        4,000원
        25.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electronic textiles promise to provide an intelligent platform to enlarge the scope of wearable electronic applications. Therefore, the combination of flexible energy storage devies into wearable systems is a key for operating these electronic textiles during bending, knotting, and rolling. Nonetheless, the application of fibrous supercapacitors consisting of a gel-electrolyte and carbon fiber electrode is still obstructed by low capacitance, low rate-performance, and poor cycling stability owing to the inefficient interface between the gel-electrolyte and electrode. Here, a fibrous supercapacitor is obtained using an optimized gelelectrolyte that improves the ionic diffusion capability. The optimized fibrous supercapacitor shows a superior electrochemical performance, including high specific capacitance of 41 mF cm−2 at current density of 2.0 μA cm−2, high-rate performance with 17 mF cm−2 at a current density of 15.0 μA cm−2, and outstanding cycling stability (88% after 3,000 cycles at a current density of 200.0 μA cm−2). The excellent energy storage performance is mainly attributed to the optimzied interface between the gelelectrolyte and electrode material, leading to an improved ionic diffusion capability.
        4,000원
        26.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The porous carbons with high specific surface area and excellent electrochemical properties were prepared using three types of green needle coke as raw materials. Electrochemical performances of the porous carbons derived from different microstructure green needle coke were investigated. The XRD and Raman spectra demonstrated that the content of the ordered carbon microcrystals were decreased and the content of amorphous and cross-linked structure were increased in the porous carbons with comparison to the raw materials. The results of N2 adsorption–desorption analysis verified that the content of ordered microcrystalline structure in the raw materials evidently influence the specific surface area and pore size distribution of the porous carbons. The porous carbon with 1665 m2 g−1 specific surface area and 2.89 nm average pore size has shown that the specific capacitance was 288 F g−1 at the current density 1 A g−1. Furthermore, the capacity retention was 94.93% and the Coulombic efficiency was 92.87% after 5000 charge/discharge cycles.
        4,000원
        27.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To meet the increased performance and cost requirements of commercial supercapacitor, a N and O self-doped hierarchical porous carbon is fabricated via a green and simple self-activation route utilizing leaves of wild hollyhock as raw materials. Comparing to commercial activated carbon, the reported material exhibits some marked merits, such as simple and green fabrication process, low cost, and superior capacitance performance. The specific surface area of the obtained N and O codoped hierarchical porous carbon arrives 954 m2 g−1, and the content of the self-doped nitrogen and oxygen reaches 2.64 at.% and 7.38 at.%, respectively. The specific capacitance of the obtained material reaches 226 F g− 1 while the specific capacitance of the symmetric supercapacitor arrives 47.3 F g− 1. Meanwhile, more than 90.3% of initial specific capacitance is kept under a current density of 20 A g− 1, and no arresting degradation is observed for capacitance after 5000 times cycle, perfectly demonstrating the excellent cycle and rate capability of the obtained material. The obtained N and O co-doped hierarchical porous carbon are expected to be an ideal substitution for commercial activated carbon.
        4,200원
        28.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In-situ carbon-coated tin oxide (ISCC-SnO2) was fabricated by colloidal processing and sucrose was used as a soluble carbon source. ISCC-SnO2 was characterized by X-ray diffraction (XRD), Raman spectroscopy, and nitrogen adsorption–desorption by BET methods, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) properties of ISCC-SnO2 were investigated in 1 M Na2SO4 solution. The specific capacitance of ISCC-SnO2 was achieved 42.7 mFcm−2 at a scan rate of 25 mVs−1 and showed excellent charge–discharge behavior.
        4,000원
        29.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 다공성 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료와 “이온젤” 이라고 불리는 고분자 고체 전해질을 이용하여 슈퍼커패시터를 제작 하였으며, 금속유기골격체의 함량에 따른 전기화학적 거동을 관찰하여 보았다. 슈퍼커패시터의 전기화학적 특성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)으로 분석하였으며, 그 결과로, 다공성 활성탄소 대비 금속유기골격체를 0.5 wt% 첨가 하였을 때 가장 높은 전기용량값을 확인 할 수 있었으며, 0.5 wt% 이상의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료되며, 이러한 결과를 바탕으로 제조된 다공성 활성탄소/금속유기골격체 복합재료 기반의 슈퍼커패시터는 다양한 분야에 활용이 가능 할 것으로 판단된다.
        4,000원
        30.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Free-standing hybridized electrode consisting of double-walled carbon nanotubes (DWNTs) and activated carbon have been fabricated for flexible supercapacitor applications. The xanthan-gum, used in our methodology, showed high ability in dispersing the strongly bundled DWNTs, and was then effectively converted to activated carbon with large surface area via chemical activation. The homogeneously dispersed DWNTs within xanthan-gum derived activated carbon acted as both electrical path and mechanical support of electrode material. The hybridized film from highly dispersed DWNTs and activated carbon was mechanically strong, has high electrical conductivity, and exhibited high specific capacitance of 141.5 F/g at the current density of 100 mV/s. Our hybridized film is highly promising as electrode material for flexible supercapacitors in wearable device.
        4,000원
        31.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The energy demands of the world have been accelerating drastically because of the technological development, population growth and changing in living conditions for a couple of decades. A number of different techniques, such as batteries and capacitors, were developed in the past to meet the demands, but the gap, especially in energy storage, has been increasing substantially. Among the other energy storage devices, supercapacitors have been advancing rapidly to fill the gap between conventional capacitors and rechargeable batteries. In this study, natural resources such as pistachio and acorn shells were used to produce the activated carbons for electrode applications in a supercapacitor (or an electrical double-layer capacitor— EDLC). The activated carbon was synthesized at two different temperatures of 700 °C and 900 °C to study its effect on porosity and performance in the supercapacitor. The morphology of the activated carbon was studied using scanning electron microscopy (SEM). A solution of tetraethylammonium tetrafluoroborate ( TEABF4)/propylene carbonate (PC) was prepared to utilize in supercapacitor manufacturing. The performance of the EDLC was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Activated carbons from both the pistachio and acorn shells synthesized at 700 °C in argon gas for two hours exhibited better surface textures and porosity. There activated carbons also exhibited more capacitor-like behavior and lower real impedances, indicating that they would have superior performance compared to the activated carbons obtained at 900 °C. This study may be used to integrate some of natural resources into high-tech energy storage applications for sustainable developments.
        4,300원
        32.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polypyrrole (PPy) decorated on reduced graphene oxide (rGO) films is successfully prepared with pyrrole (Py) monomers and rGO through one-step combining oxidation with polymerization reaction. Compared with the pure individual components, rGO/PPy compound turns out better electrochemical characteristics owing to the introduction of rGO sheets, which improves the specific surface area and the conductivity of composite material. When the amount of rGO is 10% of the total, the rGO/PPy compound delivers the best capacitance of 389.3 F g−1 at 1.0 A g−1 in a three-electrode system and 266.8 F g−1 at 0.25 A g−1 in the symmetric supercapacitor system. In addition, asymmetric device (rGO/PPy//AC) has been successfully fabricated using optimized rGO/PPy compound as positive electrode, activated carbon as negative electrode (AC) and 1 M Na2SO4 aqueous solution as electrolyte. The device obtains long cycle stability under the high-voltage region from 0 to 1.6 V, meanwhile displaying the satisfied energy density of 19.7 Wh kg−1 at 478.1 W kg−1. Besides, the rGO/PPy//AC device presents satisfactory rate capability and long life time.
        4,000원
        33.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Heteroatoms in situ-doped hierarchical porous hollow-activated carbons (HPHACs) have been prepared innovatively by pyrolyzation of setaria viridis combined with alkaline activation for the first time. The micro-morphology, pore structure, chemical compositions, and electrochemical properties are researched in detail. The obtained HPHACs are served as outstanding electrode materials in electrochemical energy storage ascribe to the particular hierarchical porous and hollow structure, and the precursor setaria viridis is advantage of eco-friendly as well as cost-effective. Electrochemical measurement results of the HPHACs electrodes exhibit not only high specific capacitance of 350 F g−1 at 0.2 A g−1, and impressive surface specific capacitance (Cs) of 49.9 μF cm−2, but also substantial rate capability of 68% retention (238 F g−1 at 10 A g−1) and good cycle stability with 99% retention over 5000 cycles at 5 A g−1 in 6 M KOH. Besides, the symmetrical supercapacitor device based on the HPHACs electrodes exhibits excellent energy density of 49.5 Wh kg−1 at power density of 175 W kg−1, but still maintains favorable energy density of 32.0 Wh kg−1 at current density of 1 A g−1 in 1-ethy-3-methylimidazolium tetrafluoroborate ( EMIMBF4) ionic liquid electrolyte, and the excellent cycle stability behaviour shows the nearly 97% ratio capacitance retention of the initial capacitance after 10,000 cycles at current density of 2 A g−1. Overall, the results indicate that HPHACs derived from setaria viridis have appealing electrochemical performances thus are promising electrode materials for supercapacitor devices and large-scale applications.
        4,600원
        34.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduced graphene oxide (rGO)/activated carbon (AC) composites are coated on the aluminum substrate using spray coating technique to fabricate nanocarbon-based supercapacitor. Polymer-based solid-state xanthan-gum/Na2SO4 electrolyte is also introduced to increase stability of the supercapacitor. The electrochemical properties of the supercapacitor are evaluated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge tests. The highest capacitance value of the rGO/AC composite-based supercapacitor is 120 F/g. The rGO/AC composite-based supercapacitor has also retained ~ 85% of its initial capacitance value after 3000 galvanostatic charge/discharge cycles.
        4,000원
        35.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduced graphene oxide/single-wall carbon nanotubes composites are coated onto the polyurethane substrate using spray coating technique to produce a stretchable and semi-transparent supercapacitor. The electrochemical properties of the stretchable and semi-transparent full device as a function of stretching cycles are characterized using electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the stretchable and semi-transparent supercapacitor exhibit good capacitive behavior even after prolonged stretching cycles up to 100. The highest capacitance value of the stretchable and semi-transparent supercapacitor (unbent) is 21.4 F g−1. The capacitance value of the stretchable and semi-transparent supercapacitor is retained 62% after 100th stretching with application of 3000th galvanostatic charge/discharge cycles.
        4,000원
        37.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work introduces a new method for the recycling of waste flocculation sludge to prepare electrode materials for supercapacitor. Hazardous azo dye was removal from textile dying wastewater by a new chitosan-based flocculant, and the generated dye sludge flocs was used as a nitrogen-containing precursor for the fabrication of N-doped carbon materials. The influence of azo dye on specific surface areas, nitrogen content, pore evolution of the resulting products and their electrochemical performance were investigated in detail. The results demonstrated a dual role of azo dye worked as both a nitrogen resource and pore-forming agent. The resulting N-doped carbon nanosheets derived from azo dye flocs demonstrated high electrochemical capacitance and good stability for supercapacitor electrode, which is attributed to the unique nitrogen doping, higher specific surface area and efficient charge transfer ability.
        4,000원
        38.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene and Fe3O4 were bound by electrostatic attraction and prepared by effective reduction through microwave treatments. As a result of fabricating graphene with Fe3O4 as a composite material, it has been confirmed that it contributes to the structural improvement in graphene stabilization and at the same time, it shows improved electrochemical performance through improved charge transfer. It was also confirmed that the crystalline Fe3O4 was uniformly dispersed in the rGO sheet, effectively blocking the reaggregation due to the van der Waals interaction between the neighboring rGO sheets. The structural analysis of prepared composites was confirmed by transmission electron microscopy, and X-ray diffractometer. Electrochemical properties of composites were studied by cyclic voltammetry, galvanostatic charge–discharge curves, and electrochemical impedance spectroscopy. The Fe3O4 (0.4 M)/rGO composite showed a high specific capacitance of 972 F g−1 at the current density of 1 A g−1 in 6 M KOH electrolyte, which is higher than that of the pristine materials rGO (251 F g−1) and Fe3O4 (183 F g−1). Also, the prepared composites showed a very stable cyclic behavior at high current density, as well as an improvement in comparison with pristine materials in terms of resistance.
        4,000원
        39.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 “이온젤” 이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol)-H₃PO₄의 고체 전해질에 이온성 액체 BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전고체 전해질과 환원된 그래핀 옥사이드/전도성 고분자 복합재료 기반의 전극 재료를 이용하여 유연성을 갖는 슈퍼커패시터를 제작 하였으며, 유연성에 따른 전기화학적 특성을 분석하여 보았다. 환원된 그래 핀 옥사이드/전도성 고분자 복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성을 유연성에 따라서 측정하기 위해서 프레스로 0.01 kg/cm²의 일정한 압력으로 최대 100회 까지 굽힘 시험 (bending test)을 진행 하였으며, 0~100 회의 굽힘 시험 이후에 순환 전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 유연성 슈퍼커 패시터의 초기 전기용량은 43.9 F/g으로 확인 할 수 있었고, 이 값은 50회, 100회의 굽힘 시험 후에 각각 42.0F/g, 40.1F/g로 감소하는 현상을 확인할 수 있었다. 이러한 결과로 미루어 보아 물리적인 응력이 슈퍼 커패시터의 전기화학적 특성 감소에 영향을 주는 것으로 사료되며 또한, 굽힘 횟수에 따른 슈퍼커패시터의 전기화학적 특성 감소 원인을 확인하기 위해서 굽힘 시험 전과 후의 전극표면을 전자주사 현미경으로 관찰 하여 보았다.
        4,000원
        40.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At 175 ℃, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.
        4,000원
        1 2 3