Inflammation is a protective mechanism against pathogens, but if maintained continuously, it destroys tissue structures. Aggregatibacter actinomycetemcomitans is a gram-negative, facultative anaerobic bacterium often found in severe periodontitis. A. actinomycetemcomitans invades epithelial cells and triggers inflammatory response in the immune cells. In this study, we investigated the effect of water-soluble rosehip extract on A. actinomycetemcomitansinduced inflammatory responses. A human monocytic cell line (THP-1) was differentiated to macrophages by phorbol 12-mystristate 13-acetate treatment. The cytotoxic effect of extract was determined using the 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide assay. The effects of extract on bacterial growth were examined by measuring the optical densities using a spectrophotometer. THP-1-derived macrophages were infected A. actinomycetemcomitans after extract treatment, and culture supernatants were analyzed for cytokine production using enzyme-linked immunosorbent assay. Protein expression was measured by western blotting. Extract was not toxic to THP-1- derived macrophages. A. actinomycetemcomitans growth was inhibited by 1% extract. The extract suppressed A. actinomycetemcomitans-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-8 production. It also decreased mitogen-activated protein kinase (MAP kinase) and nuclear factor-κB (NF-κB) phosphorylation. Moreover, the extract inhibited the expression of inflammasome components, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3, Absent in Melanoma 2, and apoptosis associated speck-like protein containing a CARD. And cysteine-aspartic proteases-1 and IL-1β expression were decreased by the extract. In summary, extract suppressed A. actinomycetemcomitans growth and decreased inflammatory cytokine production by inhibiting activation of MAP kinase, NF-κB, and inflammasome signaling. Rosehip extract could be effective in the treatment of periodontal inflammation induced by A. actinomycetemcomitans infection.
Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteriainduced secretion of IL-1β among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.
We have previously shown that the specific phosphatidylinositol 3-kinase inhibitor LY294002 (LY29), and its inactive analog LY303511 (LY30), inhibit a monocyte chemoattractant protein-1 (MCP-1) expression in human umbilical vein endothelial cells; these results suggest the potential of LY30 as an anti-inflammatory drug. In this study, we determined the effects of LY30 on the production of various inflammatory cytokines in human macrophagic THP-1 cells which were stimulated with lipopolysaccharide (LPS). LY30 selectively suppressed the mRNA expression of IL-12 p40, TNF-α, and MCP-1 without affecting the expression of IL-1α, IL-6, and IL-8. Inhibition of the production of IL-12 and TNF-α by LY30 was also demonstrated using ELISA assays. In order to elucidate the mechanisms of the action of LY30, we examined the role played by the mitogen-activated protein kinases and the key transcription factors, AP-1 and NF-κB in LPS-stimulated THP-1 cells. The results revealed that LY30 inhibited LPS-induced activation of ERK, but not p38 or JNK. Furthermore, the AP-1 DNA binding activity was suppressed by LY30 based upon the dosage, whereas NF-κB DNA binding was not affected. These results suggest that LY30 selectively inhibits cytokine production in the LPS-stimulated macrophagic THP-1 cells by downregulating the activation of ERK and AP-1.
Background: Periodontitis is an inflammatory disease characterized by the breakdown of tooth-supporting tissues, leading to tooth loss. Aggregatibacter actinomycetemcomitans are major etiologic bacterium causing aggressive periodontitis. Ursodeoxycholic acid (UDCA), a hydrophilic gall bladder acid, has been used as an effective drug for various diseases related to immunity. The aim of this study was to investigate the effect of UDCA on the inflammatory response induced by A. actinomycetemcomitans. Methods: A human acute monocytic leukemia cell line (THP-1) was differentiated to macrophage- like cells by treatment with phorbol 12-mystristate 13-acetate (PMA) and used for all experiments. The cytotoxic effect of UDCA was examined by MTT assay. THP-1 cells were pretreated with UDCA for 30 min before A. actinomycetemcomitans infection and the culture supernatant was analyzed for various cytokine production by ELISA. The effect of UDCA on bacterial growth was examined by measuring optical densities using a spectrophotometer. Results: UDCA showed no cytotoxic effect on THP-1 cells, up to 80 μM Ed highlight: Please confirm technical meaning. UDCA pretreatment inhibited the A. actinomycetemcomitansinduced IL-1β, TNF-⍺, and IL-17A secretion in a dosedependent manner. UDCA also inhibited IL-21 production at 60 μM. The production of IL-12 and IL-4 was not influenced by A. actinomycetemcomitans infection. Conclusion: These findings indicate that UDCA inhibits the production of inflammatory cytokines involved in innate and Th17 immune responses in A. actinomycetemcomitansinfected THP-1- derived macrophages, which suggests its possible use for the control of aggressive periodontitis.
Background: Periodontitis is generally a chronic disorder characterized by the breakdown of tooth-supporting tissues. P. gingivalis, a Gram-negative anaerobic rod, is one of the major pathogens associated with periodontitis. Frequently, P. gingivalis infection leads to cell death. However, the correlation between P. gingivalis–induced cell death and periodontal inflammation remains to be elucidated. Among cell deaths, the death of immune cells appears to play a significant role in inflammatory response. Thus, the aim of this study was to examine P. gingivalis–induced cell death, focusing on autophagy and apoptosis in THP-1 cells. Methods: Human acute monocytic leukemia cell line (THP-1) was used for all experiments. Autophagy induced by P. gingivalis in THP-1 cells was examined by Cyto ID staining. Intracellular autophagic vacuoles were observed by fluorescence microscopy using staining Acridine orange (AO); and 3-methyladenine (3-MA) was used to inhibit autophagy. Total cell death was measured by LDH assay. Cytokine production was measured by an ELISA method. Results: P. gingivalis induced autophagy in an MOI-dependent manner in THP-1 cells, but 3-MA treatment decreased autophagy and increased the apoptotic blebs. P. gingivalis infection did not increase apoptosis compared to the control cells, whereas inhibition of autophagy by 3-MA significantly increased apoptosis in P. gingivalis-infected THP-1 cells. Inhibition of autophagy by 3-MA also increased total cell deaths and inflammatory cytokine production, including IL-1β and TNF-⍺. Conclusion: P. gingivalis induced autophagy in THP-1 cells, but the inhibition of autophagy by 3-MA stimulated apoptosis, leading to increased cell deaths and pro-inflammatory cytokines production. Hence, the modulation of cell deaths may provide a mechanism to fight against invading microorganisms in host cells and could be a promising way to control inflammation.
Interleukin-1b (IL-1β), a proinflammatory cytokine, regulates the innate immune responses against bacterial infection. Mature IL-1β is produced from pro-IL-1β by activated caspase-1, which in turn is activated by the inflammasome complex formation. In this study, we compared the inflammasome mRNA expression induced by S. sanguinis, S. oralis, F. nucleatum and P. intermedia. Among the tested bacteria, S. sanguinis induced the highest IL-1β secretion. S. oralis, F. nucleatum and P. intermedia induced very weak IL-1β secretion. S. sanguinis mostly induced the NLRP3 mRNA expressions. Although F. nucleatum did not induce high IL-1β secretion, it induced high expression levels of AIM2, NLRP2, and NLRP3. No specific inflammasomes were induced by S. oralis and P.intermedia. Studying the inflammasome complex activation induced by oral bacteria may thus enhance our understanding of the pathogenesis of oral diseases.
A recent study reported that Pleurotus ostreatus has the potential to be used as a β-glucan-based cream for supportive complementary therapy of atopic dermatitis. KH054 is a new herbal prescription consisting of P. ostreatus and Panax ginseng. The effects of atopic dermatitis-induced materials on the expression of cytokine genes in human monocytes (THP-1, EoL- 1) have been examined. Some reports demonstrated that P. ginseng augments the activity of natural killer cells, which plays an important role in innate immunity against infection and tumor development. Monocyte chemotactic protein 1 (MCP-1), interleukin (IL)-6, and IL-8 have important roles in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The present study investigated whether KH054 on induced IL-6, IL-8, and MCP-1 secretion by house dust mite (Dermatophagoides pteronissinus) in THP-1 (human acute monocytic leukemia) and EoL-1(Human eosinophilic leukemia) cell. D. pteronissinus functions in the pathogenesis of allergic diseases, including atopic dermatitis and asthma. The inhibitory effect of KH054 on the induction of IL-6, IL-8, and MCP-1 secretion by D. pteronissinus extract in THP-1 and EoL-1 cells was examined. KH054 potently suppressed the elevated production of IL-6 and IL-8 induced by D. pteronissinus treatment in THP-1 and EoL-1 cells. Based on the present results, KH054 may be useful for developing functional foods to treat atopic dermatitis.
Haemaphysalis longicornis (Hl) as members of the ixodid tick inhabits lots of grass thicket of field and mountain. Ticks are blood-feeding ectoparasites that can mediate a variety of diseases to human and animals, causing Lyme disease, Rocky Mountain spotted fever, and human monocytic ehrlichiosis. Particularly, ticks can trigger an inflammatory response representing symptoms about swelling and itching in human. The aim of this study is to investigate the effect of H. longicornis extract (HlE) on production of inflammatory cytokines and their mRNA in human monocytic THP-1 cells. In a time- and dose-dependent manner, human monocytic THP-1 cells was treated with HlE. Supernatants were analyzed for the production of cytokines using enzyme-linked immunosorbent assay (ELISA). mRNA level in the culture cells was measured by a reverse transcriptase-polymerase chain reaction (RT-PCR). As a result of this study, HlE significantly induced secretion of IL-6, IL-8, and MCP-1 in THP-1 cells. These results suggest that HlE increase the release of proteins and mRNAs level of inflammatory cytokines in THP-1 cells. HlE may play a role in contributing to inflammatory diseases through stimulation of immune cells. Further research of H. longicornis is needed to better understand the elucidation of the pathogenic mechanism.
Tyrophagus putrescentiae (Tp) as a storage mite inhabitats in stored grains, hay, and straw at agricultural areas. T. putrescentiae stimulates an immune response and triggers inflammatory cytokines release, and thus it is a source of allergen that sensitize and induce allergic reactions. Also, T. putrescentiae has been reported to cause asthma and atopic disease by cross-reactivity with Dermatophagoides pteronyssinus (Dp). The study on T. putrescentiae in human monocytic THP-1 cells is not enough to understand cytokine expression and pathological mechanisms. The aim of this study is to investigate the effect of T. putrescentiae extract (TpE) on production of inflammatory cytokines and expression of mRNA level in THP-1 cells. THP-1 cells are treated with TpE and supernatants were analyzed for the production of cytokines using enzyme-linked immunosorbent assay (ELISA). mRNA level in the culture cells was measured by a reverse transcriptase-polymerase chain reaction (RT-PCR). As a result of this study, TpE significantly induced secretion of interleukin-6, interleukin-8, and monocyte chemotactic protein-1 (MCP-1) in THP-1 cells in time- and dose-dependent manner. These results suggest that TpE may play a role in contributing to inflammatory disease through stimulation of immune cell. Further research of T. putrescentiae is needed to understand the elucidation of the pathogenic mechanism.
[Background] Cordyceps militaris is a traditional popular mushroom, produces an important bioactive compound Cordycepin (3’-deoxyadenosine) used for the tonic and medicinal purpose in eastern Asia. Cordycepin is reported to possess many pharmacological activities including immunologically stimulating, anti-tumor, anti-virus, and anti-infection effects. [Methods] Growth inhibition of human leukemia cells was assessed by MTT assays. The determination of apoptotic cell death was performed by flow cytometry analysis, agarose gel electrophoresis and DAPI fluorescent staining methods. The apoptotic-regulated gene markers in both death receptor- and mitochondria-mediated apoptotic pathways were detected by RT-PCR and Western blot analysis etc. [Results] It was found that inhibition of cell proliferation was observed for human leukemia U937 and THP-1 cells treated with cordycepin in a dose-dependent manner. Cordycepin induced morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. Apoptosis of U937 and THP-1 cells by cordycepin was associated with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. Cordycepin treatment induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant inhibition of poly(ADP-ribose) polymerase (PARP), β-catenin and phospholipase (PLC)-γ1 protein. Conclusions: Our results indicated that the apoptotic processes caused by cordycepin are mediated by the regulation of the Bcl-2 and caspase family in human leukemia U937 and THP-1 cells. Our data also suggested that cordycepin may be a potential chemotherapeutic agent for the treatment of leukemia cancer patients.
House dust mites (HDMs) play an important role in the occurrence of allergic diseases such as asthma and atopic dermatitis. Dermatophagoides pteronyssinus (Der p) is one of the most prevalent HDMs. It mediates the activation of T cells and monocytes, and induces the elevation of immunoglobulin E levels in allergic diseases. However, the effects of Der p on human monocytes have not been fully understood. In the present study, we investigated whether or not Der p has a great effect on the chemotactic activity of the human monocytic cell line, THP-1 cells, as induced by CC chemokines. We also show that the Der p extract (DpE) increased the chemotactic activity of THP-1 cells in response to MCP-1, RANTES, MIP-1α, and TARC, but has no effect on the expressions of CC chemokine receptors (CCRs) binding to CC chemokines in THP-1 cells. Protease inhibitors, such as aprotinin and E64, blocked the increased chemotaxis, while cytoplasmic Ca2+ influx mediated by these chemokines was inhibited by DpE. These results indicate that DpE increases the chemotactic activity of THP-1 cells in response to CC chemokines by regulating the cells’ protease-dependent mechanism. This finding may be useful in identifying the pathogenesis of allergic diseases induced by Der p.
Porphyromonas gingivalis is a major etiologic agent of chronic periodontitis and cytokines produced by macrophages play important roles in the pathogenesis of periodontal diseases. In this study we investigated the cytokine response of phorbol myristate acetatedifferentiated THP-1 cells exposed to P. gingivalis. Compared with the prominent cell wall components of P. gingivalis (lipopolysaccharide and the major fimbrial protein FimA), live P. gingivalis stimulated much higher levels of cytokine production. In addition, whereas low multiplicity of infection challenges (MOI=10) of P. gingivalis 381 stimulated high levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, high dose challenges with this bacterium (MOI = 100) resulted in a substantially diminished production of MCP-1 and IL-6. Moreover, high MOI P. gingivalis challenges achieved only low levels of induction of MCP-1 and IL-6 mRNA. The decreased production of MCP-1 and IL-6 appeared to be mediated by P. gingivalis proteases, because high MOI challenges with congenic protease mutant strains of this microorganism (MT10 and MT10W) did not result in a diminished production of MCP-1 and IL-6. Similar to its protease mutant strains, leupeptin (a protease inhibitor)- treated P. gingivalis at high doses induced high levels of MCP-1 production. To examine the mechanisms underlying the diminished production of MCP-1 by P. gingivalis proteases, the activation of mitogen-activated protein (MAP) kinases and NF-xB was compared between the 381 and MT10W strains. Whilst high doses of both 381 and MT10W similarly activated the three members of the MAP kinase family, the DNA binding activity of NF-xB, as revealed by gel shift assays, was greatly increased only by MT10W. Taken together, our data indicate that P. gingivalis stimulates the production of high levels of TNF-α, IL-1β, IL-6, and MCP-1 but that high dose challenges with this bacterium result in a diminished production of MCP-1 and IL-6 via the protease-mediated suppression of NF-B activation in THP-1 macrophagic cells.
Periodontopathogens including Porphyromonas gingivalis interact with host periodontal cells and the excessive subsequent host responses contribute a major part to the development of periodontal diseases. Cyclooxygenase(COX)-2-synthesized has detrimental activities in terms of periodontal pathogenesis. The present study investigated induction of COX-2 expression by P. gingivalis in human monocytic THP-1 cells. Live P. gingivalis increased expression of COX-2, but not that of COX-1, which was demonstrated at both mRNA and protein levels. Elevated levels of were released from P. gingivalis-infected THP-1 cells. Pharma-cological inhibition of p38 mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK) substantially attenuated P. gingivalis-induced COX-2 mRNA expression. Indeed, activation of p38 MAPK and ERK was observed in P. gingivalis-infected THP-1 cells. Also, P. gingivalis induced activation of nuclear factor-κB (NF-κB)which is an important transcription factor for COX-2. These results suggest that COX-2 expression is up regulated in P. gingivalis-infected monocytic cells, at least in part, via p38 MAPK, ERK, and NF-κB.
This work aimed to elucidate the anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino with a cellular system of LPS-stimulated RAW 264.7 and THP-1 cells. Some key pro-inflammatory cytokines and mediators including NO, iNOS, PGE2, COX-2, TNF-α, NF-kB p50 and NF-kB p65 were studied by sandwich ELISA and western blot analysis. Ethyl acetate fraction could significantly inhibit the production of NO, PGE2, TNF-α, iNOS and COX-2 in LPS-stimulated cell than that of single LPS-stimulated. And ethyl acetate fraction suppresses the activation of NF-kB p50 and NF-kB p65. All the results showed that ethyl acetate fraction had a good anti-inflammatory effect on LPS-stimulated RAW264.7 and THP-1 cells. Taken together, the anti-inflammatory actions of ethyl acetate fraction from Cnidium officinale Makino might be due to the down-regulation of NO, PGE2, TNF-α, iNOS and COX-2 via the suppression of NF-kB activation.