Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
본 연구에서는 2D 조파수조를 통해 수행된 모형시험결과를 기반으로 원형실린더에 분포하는 파랑충격압력을 시간에 따라 계측하고 이를 CFD해석 결과와 비교하였다. 전산유체역학 해석을 통해 파랑충격력에 직접평가법에 관한 효용성을 확인할 수 있었고, 실험으로부터 구한 파랑충격 시계열 데이터를 그대로 원형단면을 갖는 실제 해양구조물의 부재에 적용하였다. 실린더에 분포하는 변위 및 응력의 특성과 특이점이 바뀌는 것을 확인하였고 실제 시계열을 적용하는 것이 해양구조물의 강도평가를 보다 정확하게 평가할 수 있음을 확인할 수 있었다. 또한, 선수부에 요구되는 외판의 최소선급규정에 따른 두께 경험식들을 분석하여 적용하고자 하였다. 동일한 재료 물성치를 갖는 강재에 관해 선수외판에 요구되는 구조물의 최소두께와 원형단면 부재에 요구되는 최소두께를 비교·분석하였고 이를 통해 NORSOK standard에 제시되어 있는 구조물의 손상기준을 활용하여 허용 두께치를 추정하고자 하였다. 특히 해양구조물의 갑판충격력(wave in deck)의 경우 이와 관련된 경험식이나 최소두께 요구사항들이 정립되어 있지 않기 때문에 본 연구를 통해 파랑충격력에 따라 요구되는 판재의 최소두께를 제안하고자 하였다.
Liquid storage tank is one of the major infrastructures and generally used to store gases, drinking and utilizing water, dangerous fluids, fire water and so on. According to the recent reports and experiences, the tank structures are damaged in many earthquakes due to their low energy dissipating capacity. Therefore, many researchers have been tried to know the dynamic properties of the tanks including liquids. However, vary limited experimental studies are carried out using relatively small tank models. In this study, a series of shaking table tests are performed with maximum 2 m cubic rectangular liquid storage tanks made of steel to measure the natural frequency and estimate damping coefficient of impulsive and convective mode of the tanks. Especially, the damping values under different shapes and excitation methods are estimated by logarithmic decrement method and half power band-pass method and compared with current design code and standards such as ASCE 7, Eurocode 8 and NZS. Test results show that the impulsive mode damping is around 2% which is proposed by general standards and codes but the impulsive mode damping is 0.13% average that is slightly lower than the code recommendation.
Since 2003, policies and practices related to the reduction of CO2 gas emission from ships has been discussing by the International Maritime Organization. The representative emission index and indicator are the EEDI (Energy Efficiency Design Index) for the new ships and EEOI (Energy Efficiency Operational Indicator) during the voyage. In this paper a water tank test and procedure development are introduced for the purpose of improving EEDI. The results showed good agreement explaining the characteristics properly.
이 연구에서는 유체저장탱크의 내진 설계 고도화에 활용하기 위하여 정사각형 수조의 슬러싱 진동대실험에 대한 상관해석을 수행 하였다. 이를 위하여 CFD 프로그램인 ANSYS CFX를 이용하였다. CFD 해석 프로그램 검증을 위해 슬러싱 공진이 발생하는 운동에 대한 해석 모델의 요소크기 및 난류모델에 대한 슬러싱응답의 민감도해석을 수행하였다. 그 결과, 수직방향 요소크기 뿐만 아니라 수평방향 요소크기에 따라 수위 예측에 민감한 영향을 미치는 것을 알 수 있었다. 또한, SST 난류모델을 사용한 CFD해석 결과가 실험 결과와 매우 잘 일치하는 것을 알 수 있었다. 이로부터 결정된 CFX 해석모델을 사용하여, 가진 주파수와 가진 진폭이 다른 3가지 실험 결과에 대하여 상관해석을 수행하였다. 그 결과, CFD해석모델을 사용하여 지진해석을 수행할 경우, 슬러싱응답이 실험 결과와 매우 잘 일치하는 것을 알 수 있었다.
This study conducted seismic performance evaluation of externally reinforced water tank using shaking table test. From the shaking table test result, externally reinforced system shows sufficient stiffness for water tanks and high natural frequency over 8Hz. The test result also showed safety result of induced maximum stress of water tank shown in the allowable stress.