검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent surge in energy consumption has sharply increased the use of fossil fuels, leading to a steep rise in the concentration of greenhouse gases in the atmosphere. Interest in hydrogen is growing to mitigate the issue of global warming. Currently, hydrogen energy is transported in the form of high-pressure gaseous hydrogen, which has the disadvantages of low safety and energy efficiency. To develop commercial hydrogen vehicles, liquid hydrogen should be utilized. Liquid hydrogen storage tanks have supports between the inner and outer cylinders to bear the weight of the cylinders and the liquid hydrogen. However, research on the design to improve the structural safety of these supports is still insufficient. In this study, through a thermal-structural coupled analysis of liquid hydrogen storage tanks, the model with three supports, which had the lowest maximum effective stress in the outer tank, inner tank, and supports as proposed in the author's previous research, was used to create analysis models based on the diameter of the supports. A structurally safe design for the supports was proposed.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The government declared ‘2050 carbon neutrality’ as a national vision in October 2020 and subsequently pursued the establishment of a ‘2050 carbon neutrality scenario’ as a follow-up response. Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable, environmentally friendly and high calorific value. Liquid hydrogen is thus more advantageous for large-scale storage and transportation. However, due to the large difference between the liquid hydrogen temperature and the environment temperature, an inevitable heat leak into the storage tanks of liquid hydrogen occurs, causing boil-off losses and vent of hydrogen gas. Researches on insulation materials for liquid hydrogen are actively being conducted, but research on support design for minimal heat transfer and enhanced rigidity remains insufficient. In this study, to design support structures for liquid hydrogen storage tanks, a thermal-structural coupled analysis technique was developed using Ansys Workbench. Analytical models were created based on the number and arrangement of supports to propose structurally safe support designs.
        4,000원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable, environmentally friendly and high calorific value. However, the low density of hydrogen makes its storage an urgent technical problem for hydrogen energy development. Compared with the density of gas hydrogen, the density of liquid hydrogen is more than 1.5 times higher. Liquid hydrogen is thus more advantageous for large-scale storage and transportation. However, due to the large difference between the liquid hydrogen temperature and the environment temperature, an inevitable heat leak into the storage tanks of liquid hydrogen occurs, causing boil-off losses and vent of hydrogen gas. Researches on insulation materials for liquid hydrogen are actively being conducted, but research on support design for minimal heat transfer and enhanced rigidity remains insufficient. In this study, to design support for liquid hydrogen storage tank, technique of thermal-structural coupled analysis including geometry, mesh, and boundary condition were developed using Ansys workbench, and equivalent stress and deformation distributions were analyzed.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Decarbonization plays an important role in future energy systems for establishing a zero-carbon society. Hydrogen is believed to be a promising energy source that can be converted, stored, and utilized efficiently, leading to a broad range of possibilities for future applications. Hydrogen can be stored in various forms, including compressed gas, liquid hydrogen, hydrides, adsorbed hydrogen. Among these, liquid hydrogen has high gravimetric and volumetric hydrogen densities. There are a lot of previous studies on thermal behavior of MLI and VCS and optimization insulation system, but research on the insulation performance by varying the head shape of the tank has not been conducted. In this study, thermal-structural coupled analysis was conducted on the insulation system with VCS positioned between two layers of MLI for a liquid hydrogen storage tank. The analysis considered dome shapes (torispherical, circle, ellipses), and heat flux and temperature were derived from thermal analysis to predict insulation performance. Maximum equivalent stress and deformation were calculated from the structural analysis, and the optimal dome shape was proposed.
        4,000원
        7.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후핵연료 심지층처분에 있어서 처분용기의 건전성 확보는 내부에 적재되어 있는 사용후 핵연료로부터 방사성물질이 누출되는 것을 방지하고 격리하여 처분장의 안전성을 보증하기 위한 필수적인 인자이다. 이러한 처분용기는 심지층 처분의 목적인 방사성 독성이 인간 및 자연환경에 영향을 미치지 않도록 장기간 동안 격리하고 누출을 지연시키기 위한 공학적 방벽의 중요한 요소 중의 하나이다. 심지층 처분장 설계시 주요한 요건은 처분시스템의 안전성을 유지를 위하여 처분용기에 적재되어 있는 폐기물로부터 발생된 붕괴열로 인하여 완충재의 온도가 100를 넘지 않도록 하는 것이다. 또한, 처분용기는 지하 심부 500 m 깊이에서의 수압과 완충재의 팽윤압 등 하중에 구조적 건전성을 유지하여야 한다. 본 연구에서는 직접 처분대상으로 고려하고 있는 중수로(CANDU) 사용후핵연료에 대한 처분용기의 개선된 개념을 설정하고, 심지층 처분환경에서의 열적 및 구조적 안정성을 분석하였다. 열적 안정성 해석결과 처분터널 및 처분공 간격이 40 m, 3 m 인 경우 처분 후 37년이 경과한 후에 처분용기 표면온도가 최고 온도에 도달하며, 이때 온도는 88.9 로서 처분장 온도제한 요건(100 )에 만족하였다. 또한, 정상적인 경우와 극한 상황에 따른 하중에 대한 처분용기 구조해석 결과 안전율은 각각 2.9와 1.33 으로 나타나 심지층 처분환경에서 처분용기는 구조적 건정성을 유지하는 것으로 판단되었다.
        4,000원
        8.
        2016.04 서비스 종료(열람 제한)
        Selection of a typical four companies products of domestic structural one-component sealant, high temperature, low temperature, room temperature to set up the environment for each of 80, -20, 20 ℃ and the left and right displacement of the test piece 30, 15, 0% of the maximum compression / expansion It was carried out by the repeated fatigue.
        9.
        2012.11 서비스 종료(열람 제한)
        By thermal-structural coupled stress analysis, the equivalent stress and total deformation of girder under the influence of the temperature of the liquid within pipeline of pipe-rack structure is studied. Firstly, steady-state thermal analysis is carried out using a commercial software. Then, to perform a thermal-structural coupled stress solution, structural analysis is linked to the thermal model at the Solution level. The simulation results showed that the stress ratio that considers the pipe’s temperature for thermal-structural coupled stress analysis is higher than the stress ratio that consider only the pipe’s weight for structural analysis. The thermal stress caused by temperature convection is found to be influential on the pipe rack structure.