In the development of a digital multi-process welding machine, we aimed to analyze the heat dissipation effects resulting from changes in the transformer's shape. Two installation configurations for the transformer, vertical and horizontal, were proposed. Thermal-flow analysis was conducted for the welding machine, taking into account variations in spacing between each proposed configuration. The results indicated that the shape and spacing of the components did not significantly alter the airflow around the reactor coil, which is the main heat-generating component of the machine. When comparing the heat dissipation effects across models with different transformer spacings, it was observed that models with narrower spacing exhibited improved heat dissipation, while the vertical configuration demonstrated a slightly higher heat dissipation effect overall. Transient analysis revealed the irregularities in internal flow and the resulting scattered temperature distribution over time within the welding machine.
The shell & tube-type heat exchanger has been frequently used because it shows simple structure, easy manufacturing and wide operation conditions among many heat exchangers. This study aims to investigate the characteristics for thermal flow of coolant and the possibility of damage for tube equipped with shell due to thermal stress. For these purposes, The thermal flow of coolant in tube was simulated using ANSYS-CFX program and thus the behaviors of coolant were evaluated with standard k-ε turbulence model. As the results, as the flow rate of coolant in tube was increased, the mean relative pressure was also increased with quadratic curve, however, as the surface temperature of tube was increased, mean temperature difference was linearly increased. Finally it showed that the damage of tube could be predicted, that is, which tube was the most weak due to thermal stress.
Small-sized heater is usually used to make the hot water in resting place, factory, household affairs and so on. One of methods to obtain hot water in short time is known as using instantaneous electric water heater. In this study, numerical analysis for small-sized hot water heater with straight double tube-type was tried to achieve the basic design data. This study aims to investigate the characteristics of thermal flow, for instance, such as pressure difference, outlet mean temperature and velocity, due to clearance. As the clearance is decreased, outlet mean temperature and pressure difference(Pmax.-Pmin.) are increased. Therefore appropriate relations between area of heat source and pressure difference should be set up. Further small-sized hot water heater in this study must be equipped with electric device capable of heating over 90℃.
A 2D axisymmetric numerical analysis was performed to study the characteristics of charge process inside solar thermal storage tank. The porosity and heat transfer coefficient of filler material as well as inlet velocity of heat transfer fluid are selected as simulation parameters. The porosity is varied as 0.2, 0.5, and 0.8 to account for the effect of filler granule geometry. Two levels of the heat transfer coefficient is adopted to assess the heat transfer between heat transfer fluid and filler material. The inlet velocity is varied as 0.00278, 0.0278, and 0.278m/s. As both of the porosity and the heat transfer coefficient increase, the discrepancy of the temperature distributions between the filler and heat transfer fluid decreases. As the inlet velocity increases, the penetration depth of the heat transfer fluid increases proportionally.
A 2D axisymmetric numerical analysis was performed to study the characteristics of charge process inside solar thermal storage tank. The interfacial area density and inertial resistance of filler material are selected as simulation parameters. The interfacial area density is varied as 800, 2000, and 4000 1/m. The inertial resistance is varied as 1, 3, and 5 1/m. When the interfacial area density increases from 800 to 4000 1/m, the discrepancy of the temperature distributions between the filler and heat transfer fluid decreases. As inertial resistance increases from 1 to 5, both of the temperature and fluid flow pattern changes considerably.
원자력을 이용한 황-요오드 수소생산 공정 중 황산용액을 이송하는 기존의 시스템과 달리 새로운 황산 이송장치는 벨로우즈 박스 내에서 벨로우즈 외측으로 고온 부식성 액체인 황산이 흐르고, 벨로우즈 내측으로는 냉각수가 흐르는 상태에서 주기 운동을 통해 황산용액이 펌핑 되도록 구성된다. 200 ℃ 이상의 고온 부식성 액체인 황산용액을 정량으로 이송할 수 있도록 장치의 주요부품인 벨로우즈 주변의 열해석을 통해 온도분포를 확인하여, 테프론 재질의 벨로우즈의 내식성 및 내열성을 파악하고, 장치의 안전하고 효율적인 운용을 위한 기초자료를 취득하고자 하였으며, 냉각수 입구직경 3 ㎝, 질량유량이 3.9199 ㎏/s로 고정한 경우 벨로우즈의 길이에 관계없이 테프론 변형온도 이하임을 알 수 있었다.
In order to work out statistics of environmental functions of indoor landscape plants in architectures, this study aims to conduct a simulation of how much control plants have over overheating phenomena in atria in summer, involve themselves in air current speed and maintain indoor comfort index, with a numerical analysis model.
Thus, nine kinds of representative plants which are usually used for indoor environments were selected, and purified with two irrigations a day for two weeks. And then, their transpiration and photosynthesis amounts were measured three times with a photosynthesis analysis system LICO-6400 at 38℃, which is the highest temperature in the atrium in summer. The data were organized, and another three plants with similar transpiration and photosynthesis amounts were selected.
The leaf area which accounts for 10% green zone rate inside the atrium was calculated, and the leaf surplus was removed. And then, the plants were left inside the atrium, and transpiration amount and temperature change were automatically measured for three hours. The maximum temperature change by transpiration of plants was found to be 2.21~2.92℃, which means 0.21~0.23℃ per every 100cm² of leaf area.It is hard to see air current change in atria as convection by plants as the change is at undetectible level with a distribution of 0.08~0.005m/s.
However, if air current change is made with fans even in natural air current situations, air current becomes active inside atria as rather cold air moves upward. Therefore, if 0.5 m/s of air current change is made with upward and downward fans in atrium models, the air current speed in the entire atrium converges to the level which gives the most comfort to human.
윤성범과 이기혁(1977)의 수치모형을 이용하여 열발전소의 펌프 비상중단시 냉각수 계통에서 발생하는 서어지거동을 해석하였다. 종래에 무시되었던 기계내부계통으로 부터의 유량, 폐정공기실, 및 공기유출입구, 맨홀, 개수로 및 바다의 영향을 고려하였으며, 이들이 서어지 거동에 미치는 영향을 체계적으로 분석하였다. 특히 공기유출입구의 면적에 따른 서어지 제어효과와 공기실의 공기압 변화를 제시하여 실무에의 적용이 용이하도록 하였다.
열발전소에서 비상 가동중단으로 냉각수 배수계통에 발생하는 비압축성 부정류를 해석하는 수치모형이 개발되었다. 개발된 수치모형은 냉각수 기계내부계통, 폐정, 공기실, 관로, 맨홀, 개수로 및 바다 등에 의한 복잡한 흐름에 대해 전체적인 부정류거동을 동시에 해석할 수 있는 기능을 가진다. 수치해법으로는 leap-forg 유한차분법을 적용하였으며, 간단한 경우에 대한 모형의 검증과 함께, 종래 배수암거 하류단에 적용되덕 고정수위경계조건에 대한 검토가 이루어졌다