검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 35

        1.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/g-C3N4/TiO2 catalyst has been fabricated using a simple ultrasonic method with high photocatalytic activity. The morphology, structure and optical properties of Fe3O4/ g-C3N4/TiO2 were systematically investigated by a variety of characterization techniques. The optimum degradation conditions were investigated by degrading tetracycline (TC) under visible light irradiation. The results showed that the degradation efficiency was the highest when the initial TC concentration was 5.0 mg/L, the pH value was 11 and the catalyst dosage was 1.0 g/L. After 100 min of visible light irradiation, the degradation efficiency of TC achieved at 73.61%, which was 1.64 and 1.19 times that of g-C3N4 and Fe3O4/ g-C3N4, respectively. Moreover, Fe3O4/ g-C3N4/TiO2 had good stability and recyclability. The results of capture experiments showed that ‧O2 − and ‧OH were the main active species during the photocatalytic process, and a possible photocatalytic reaction mechanism of Fe3O4/ g-C3N4/TiO2 catalyst was proposed. This study provides a new way to improve the photocatalytic performance of g-C3N4, which has great potential in degrading pollutants such as antibiotics in wastewater.
        4,000원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetically separable and reusable zinc ferrite/reduced graphene oxide ( ZnFe2O4/rGO) nanocomposite has been prepared by hydrothermal method. The results illustrate that the construction of ZnFe2O4 and rGO occur concurrently in a hydrothermal reaction that initiates the formation of rGO-wrapped ZnFe2O4 nanospheres. The morphological and structural features of the ZnFe2O4/ rGO nanocomposites reveal that the rGO nanosheets anchored to the ZnFe2O4 sphere act as a self-protective clamping layer to avoid the photo corrosion effect under photo irradiations. The nanocomposites express the soft magnetic behavior with high saturation magnetization under annealing temperature at 300 °C, which may attribute to the well-defined crystalline structure and surface defects. In addition, the GZF 300 nanocomposites exhibit the enhanced photocatalytic degradation over Rhodamine B dye which is 3.4, 1.15, and 1.32 times higher than that of ZF, GZF, and GZF 600 over under visible irradiation in 120 min. The GZF 300 nanocomposites demonstrate their ability to degrade RhB efficiently, even after several photocatalysis cycles with high catalyst recovery by its magnetically separable behavior. The high densities of oxygen defects improvise electron transfer from ZnFe2O4 to rGO and delay the recombination process of the nanocomposite, resulting in enhanced visible photocatalytic activity. The strong magnetic properties of rGO wrapped ZnFe2O4 nanocomposite catalysts the easy separation from the suspension system for multiple usages in water treatment.
        4,300원
        3.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900oC; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500oC. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.
        4,000원
        4.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.
        4,000원
        6.
        2021.10 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        단순 침전법으로 제조한 CdZnS/ZnO 광촉매를 이용하여 가시광선하에서 메틸렌블루의 광분해 반응에 대한 연구를 수행하였다. X선 회절분석법과 UV-vis 확산반사 분광법 등을 이용하여 제조된 촉매들의 물리화학적 특성을 분석하였다. 그리고 CdZnS/ZnO 광촉매의 활성을 조사하고 CdS 및 TiO2와 비교 검토하였다. CdZnS/ZnO 광촉매는 자외선뿐만 아니라 400nm에서 600nm 범위의 가시광선 영역에 있어서도 우수한 광흡수 특성을 나타내었다. 가시광선하에서 메틸렌 블루의 광분해 반응에 대해서 CdZnS/ZnO 광촉매는 CdS 와 TiO2 보다 우수한 광촉매 활성을 나타내는 것을 알 수 있었다. 그리고 가시광선하에서의 메틸렌블루의 광분해 반응에는 광촉매 반응뿐만 아니라 감광반응도 관여하고 있음을 확인할 수 있었다.
        4,000원
        7.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2−or NO3−.
        4,600원
        8.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UVvis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.
        4,000원
        9.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.
        4,000원
        10.
        2020.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.
        4,000원
        11.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.
        4,000원
        12.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        광촉매는 물에서 유기 염료를 분해하는 친환경적 기술이다. 산화 텅스텐은 이산화 티타늄에 비해 더 작은 밴드갭을 지니고 있어 광촉매 나노물질로서 활발히 연구되고 있다. 계층적 구조의 합성, 백금 도핑, 나노 복합물 또는 다른 반도체 와의 결합 등이 광촉매 분해 효율을 향상시키는 방법들로 연구되고 있다. 이들 방법들은 광 파장의 적색편이를 유도하여 전자 이동, 전자-정공 쌍의 형성과 재결합에 영향을 미친다. 산화 텅스텐의 형태 개질을 통해 앞서 언급한 광촉매 분해 효율을 향상시키는 방법들과 합성에 대해 분석하였으며 금속 산화물과 탄소 복합재를 결합하는 방법이 새로운 물질의 합성이 필요 없으며 가장 효율적인 방법으로 조사되었다. 이러한 광촉매 기술은 수처리 분리막기술과 모듈화하여 정수처리 목적으로 사용 될 수 있다.
        4,000원
        13.
        2019.05 구독 인증기관 무료, 개인회원 유료
        K-1계열 전차의 전차장 열상조준경은 주야간 및 연막, 안개 등의 상황에서 포수조준경과 독립적으로 360°회전을 통한 전 방향의 표적 관측과 전차가 정지 및 기동 간 발생하는 진동에서도 조준선을 안정화하여 전차장이 표적의 감지, 식별, 조준 및 추적 할 수 있는 장치이다. 이 장치 의 주요기능 중 하나인 가시상 및 열상을 감지하고 처리하여 최종 영상을 전차장에게 전달하는 것으로 이를 위한 핵심 부품은 주간 및 열상 창이다. 이 핵심 부품은 목표물을 관측하는 광행 로 입구에 장착되어 있으며, 목표물에 대해서 주간에는 가시광, 야간에는 적외선을 통과하여 전 차장 열상조준경의 내부 광학계통으로 전달하는 기능을 수행한다. 이와 같은 핵심부품에 대한 정비는 창 정비 품목으로 선정되어 대부분 재생정비가 아닌 신품 교환 정비를 하고 있는 실정 이다. 즉, 재생정비가 가능한 품목임에도 불구하고 신품교환에 따라 군 예산이 낭비되고 있다. 따라서 본 연구는 평면연마장비와 DLC(diamond-like carbon) 코딩장비를 활용하여 주간 및 열상 창을 연마·코팅할 수 있도록 장착치구를 개발하였다. 또한 재생공정에 대한 검사기준 정립을 포함하여 재생품에 대한 성능검증을 위해 기 발간된 창 정비작업요구서(DMWR) 수정(안)을 제시 하였다.
        3,000원
        14.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped titanium dioxide (N-doped TiO2) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped TiO2 is prepared by the sol–gel method using NH4OH and NH4Cl as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped TiO2 samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% NH4Cl produces the best physical properties. As per the UV-vis analysis results, the N-doped TiO2 exhibits a higher visible-light activity than the undoped TiO2. The wavelength of the N-doped TiO2 shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is 600℃. The coloration and phase structure of the N-doped TiO2 are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).
        4,000원
        15.
        2017.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environments and can completely destroy various organic pollutants in waste water. In this study, we used graphene oxide modified Ag2Se nanoparticles to enhance photochemically generated oxygen (PGO) species activity. Surface area and pore volumes of the Ag2Se-graphene (Ag2Se-G) samples showed catastrophic decrease due to deposition of Ag2Se. The generation of reactive oxygen species was detected through the oxidation reaction of DPCI to DPCO. The photocurrent density and the PGO effect increase in the case of the use of modified graphene. The PGO effect of the graphene modified with Ag2Se composites increased significantly due to a synergetic effect between graphene and the Ag2Se nanoparticles. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB) and industrial dyes such as Texbrite BA-L (TBA) under visible light.
        4,000원
        17.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SnS-TiO2 nanocomposites are synthesized using simple, cheap, and less toxic SnCl2 as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-TiO2 possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-TiO2 composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.
        4,000원
        18.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The most general photocatalyst, TiO2 and WO3, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with TiO2 and WO3. In the TiO2-WO3 composite, WO3 absorbs visible light creating excited electrons and holes while some of the excited electrons move to TiO2 and the holes remain in WO3. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of TiO2-WO3 composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of TiO2(4) and WO3(6) shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.
        4,000원
        19.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional TiO2 nanotube(TNT) arrays an alternative candidate over TiO2 nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive CuInS2 (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular TiO2 allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.
        4,000원
        20.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        AC and ZnS modified TiO2 composites (AC/ZnS/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/TiO2 composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/TiO2 composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/TiO2 composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/TiO2 composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.
        4,000원
        1 2