검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 52

        21.
        2017.05 서비스 종료(열람 제한)
        현재 정부에서는 폐자원 에너지의 회수・사용을 촉진하기 위해 정책적인 움직임을 보이고 있다. 폐기물 소각시설의 소각열에너지 회수・사용률 산정방법이 2015년에 확정되었고, 이를 반영한 자원순환기본법이 2018년 1월 1일부터 시행될 계획이다. 이에 따라, 국내 폐기물 소각시설의 에너지 회수・사용률을 증가시키기 위해 열에너지 회수를 통한 전기나 열원 생산의 효율을 측정하고 평가하는 것이 필요하다. 폐기물 소각시설 공정에서의 방열손실은 열에너지 회수의 효율을 저하시키는 원인 중 한가지이다. 이를 평가하기 위하여 소각시설의 벽면온도를 측정하여야 하며, 현재의 소각시설 벽면 온도 측정 방법은 환경부 고시 ‘폐기물 처리시설의 세부검사방법에 관한 규정’의 별표1 ‘폐기물 소각시설의 세부 검사방법’에 따른 지점측정 방식이다. 하지만 지점측정 방식의 온도 측정은 접촉식 온도계를 이용한 측정법으로, 대상의 접촉 지점에 따라 온도가 다르게 측정될 수 있으며 대상 시설의 평균 표면온도를 정확하게 측정하는 것에 한계를 가진다. 적외선 열화상 카메라는 대상의 넓은 면적을 동시에 촬영하여 온도를 측정하는 방식으로, 시설의 평균 표면온도를 비교적 정확하게 측정할 수 있다. 따라서 본 연구에서는 실제 가동 중인 폐기물 소각시설의 벽면 온도를 비접촉 온도 측정 방식의 적외선 열화상 카메라를 이용하여 측정하고, 기존에 수행되었던 연구를 통해 정립된 방열손실 산정식을 이용하여 방열손실을 계산하였다. 또한 폐기물의 소각 온도, 소각 용량, 소각로 표면적 크기 등 여러 가지 요인에 의한 방열손실을 고려하기 위하여 소각시설의 입열과 출열 항목을 측정하여 투입된 에너지 대비 손실량인 방열손실률을 산정하여 평가하였다.
        22.
        2017.05 서비스 종료(열람 제한)
        현행 폐기물 소각시설에서의 에너지회수 관련 규정으로는 「폐기물관리법 시행규칙」 제3조에 명시되어 있으며, 에너지 회수기준 및 검사방법, 검사기관 등에 대하여 규정하고 있다. 에너지 회수기준으로는 75 % 이상(생산량 기준)으로써 회수된 열에너지를 스스로 이용하거나 다른 사람에게 공급할 것으로 규정하고 있다. 그러나 현행 에너지회수 기준마련에 대한 근거가 미비하며, 생산된 에너지를 기준으로 산정하고 있어 실질적으로 유효이용에 대한 평가가 곤란하다. 또한, 폐기물 소각시설에서의 연소 성능 및 경제성에 가장 큰 영향을 미치는 저위발열량은 연료가 완전히 연소될 때 단위질량당 발생하는 열량(수증기 잠열 제외)으로써 에너지 시장에 대한 분석을 위해서는 기본적으로 필요하다. 저위발열량 산정방법으로는 원소분석에 의한 저위발열량, 단열열량계에 의한 저위발열량 등을 이용하여 측정하고 있으나 폐기물공정시험 기준에 따라 시료를 분할 채취하여 균일화하여도 폐기물의 대표성을 확보하기에는 어려움이 따른다. 또한 현행 산정방법으로는 지역적 특성 및 계절적 영향 등 소각로에 투입되는 폐기물의 특성을 반영하지 못하고 있는 실정이다. 이에 본 연구에서는 국내 생활폐기물 소각시설(4개소)에서의 폐기물 투입량, 증기 생산량 및 사용량 등의 실제 계측기 측정데이터와 배출가스 보유에너지, 방열손실, 바닥재 배출열 등의 현장측정 결과를 바탕으로 저위발열량(Lower Heating Value) 및 에너지 회수효율(Energy Recovery)을 산정하였다. 산정결과를 바탕으로 「자원순환기본법」 시행(2018년 1월 1일부터)에 앞서 생활폐기물 소각시설에서의 에너지 회수기준 및 산정방법에 대한 제도적 검토와 에너지회수율 기준 및 법적・제도적 정비 방향 등의 기초자료로 활용하고자 한다.
        23.
        2017.05 서비스 종료(열람 제한)
        2016년 제정된 「자원순환기본법」에서는 폐기물의 발생을 최대한 억제하고 발생된 폐기물을 순환이용 및 적정 처분하도록 하며, 자원순환사회로의 전환을 위한 기본적인 사항들을 규정하고 있다. 이에 따라 물질재활용 뿐만 아니라 에너지재활용을 극대화하기 위한 정책의 필요성이 부각되고 있으며, 폐기물 적정처리 및 에너지자원의 재활용 측면에서 소각처리 및 소각열 회수의 중요성이 더욱 대두되고 있다. 그러나 기존의 소각시설 에너지회수효율 산정 방법은 유효하게 사용된 에너지가 아닌 생산에너지를 기준으로 산정함으로써 에너지 회수율 증진을 위한 제도 도입 취지와 목적 구현에 한계를 나타냈다. 이에, 개정된 에너지 회수효율 산정방법에서는 에너지 회수를 위한 기술력 향상 및 회수 에너지 활용도 증진을 위하여 생산된 에너지 중 유효 사용량을 기준으로 산정하도록 제시하고 있다. 또한 에너지 회수효율 및 폐기물 저위발열량 산정을 위한 모든 인자를 계측장비를 통한 계측 데이터 및 현장 측정・분석 결과를 적용하도록 하여 데이터 및 산정 결과의 신뢰성과 객관성을 확보하도록 하였다. 이에, 본 연구에서는 개정된 에너지 회수효율 산정방법을 바탕으로 국내 사업장폐기물 소각시설에서의 폐기물 저위발열량과 에너지 회수효율을 산정하였다. 대상시설은 스토커소각로 5기, 로터리킬른-스토커 병합식 소각로 1기, 로터리킬른 소각로 2기, 유동층 소각로 2기로 선정하였으며 산정 인자는 업체 내 실제 계측기기 측정값과 현장 측정・분석 결과 값을 적용하였다. 폐기물 저위발열량 산정결과 평균 약 3,350.5kcal/kg의 저위발열량을 나타냈으며, 에너지 회수효율 산정결과 에너지 생산량 기준 평균 약 58.6%, 에너지 사용량 기준 평균 약 49.0%로 산정되었다. 에너지 유효 사용량 기준과 생산량 기준의 에너지 회수효율 산정 결과는 약 10%의 차이를 나타냈으며, 이는 외부 공급 및 공정 내유효 사용 등을 통하여 잠재적으로 활용 가능한 양으로 판단된다. 아울러 소각시설에서는 보다 높은 에너지 회수효율 제고를 위하여 안정적 운영・관리, 소내 사용 에너지 절감, 터빈 발전 방식의 개선 등 다양한 에너지 회수 방안을 강구할 필요가 있을 것으로 판단된다.
        24.
        2017.05 서비스 종료(열람 제한)
        전 세계적으로 지속적인 화석연료의 사용으로 인하여 화석 연료가 고갈되고 있을 뿐만 아니라 화석 연료를 사용하면서 발생하는 환경오염 때문에 대체에너지를 찾는데 많은 연구가 진행되고 있다. 이와 더불어 정부는 신재생에너지 보급을 늘리기 위하여 노력하고 있으며, 국내 연간 신재생에너지 생산량 중 폐기물 및 바이오매스에 의한 신재생 에너지 보급률이 약 70% 이상을 차지하고 있다. 특히, 국내에서 발생되는 폐기물은 높은 재활용률 덕분에 가연분 함량이 높아 열 회수 시설에 적용 시 화석원료의 대체제로 사용 가능성이 크다고 할 수 있다. 그러나 폐기물 고형 연료화 시설의 경우 반입량 대비 30 ~ 45%의 비율로 잔재물이 배출되어 매립되거나 일부는 소각시설에 의해 처리되고 있는 실정이다. 특히 이를 그대로 매립 하였을 경우 오염부하를 증가시킬 수 있으며, 매립에 의한 처분비용으로 전체 시설 운영비의 약 20%가 소요되는 것으로 알려져 있다. 따라서 본 연구는 폐기물 고형 연료 잔재물을 이용한 소각 공정에서 적용하였으며 이러한 공정에서 발생한 바닥재를 보도나 광장의 포장에 사용되는 인터로킹 블록으로 활용하는 방안을 마련하였다. 이에 바닥재에 대한 기초특성분석을 하고 혼합된 벽돌의 흡수율, 휨강도, 압축강도, 치수 등을 분석하여 바닥재 혼합비에 따른 블록 특성 변화를 관찰하였다.
        25.
        2017.05 서비스 종료(열람 제한)
        우리나라는 2030년까지 모든 경제분야에 걸쳐 온실가스 배출을 약 37% 감축할 계획을 UNFCCC에 제출하였으며 이에 따라 보다 정확한 온실가스 배출량을 산정하는 것이 중요하다. 국내 발생되는 폐기물의 매립 억제정책으로 인해 폐기물의 재활용율은 향상되고 있지만 소각비율 또한 증가될 수 있다. 따라서 소각시설에서 배출되는 가스물질의 안정적인 관리가 요구되는 실정이다. 본 연구에서는 국내 생활폐기물 소각시설 3개소(4호기) 및 사업장폐기물 소각시설 6개소(8호기)를 대상으로 연소 후 최종 배출되는 가스성분을 분석・포집하였다. 가스상 물질을 안정적으로 포집하기 위하여 가스샘플링장치를 설계・제작하여 적용하였으며, 보다 신뢰성 있는 시료채취를 위하여 3시간, 6시간, 24시간 단위로 각각 포집하여 결과값을 비교하였다. 분석대상 물질은 CO, NOx, SOx 그리고 CO2 였으며 포집한 기체시료 중 14C 분석을 통해 바이오매스량을 구하였다. 명확한 바이오매스량을 분석하기 위하여 탄소동위원소를 이용한 가속기 질량분석기(Accelerator Mass Spectrometry)를 이용하였으며 바이오매스량을 제외한 총 온실가스배출량을 구하였다.
        26.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Recently, domestic waste policy has focused on resource circulation. In accordance with Article 3, Paragraph 2 of the “Enforcement Rules of Wastes Control Act”, which is targeted at waste incineration facilities, we established and announced methods for calculating the recovery and utilization rates of incineration-sourced heat in 2015. The lower heating value is important to energy recovery and utilization rate calculations. Hence, the lower heating values of the waste incineration facilities were estimated using the thermal method from KS B 6205. Heat loss decreases the heat recovery efficiency, and should be measured and evaluated. The surface temperatures of the incinerator and boiler are required to determine heat loss. Presently, the contact point temperature method is used to measure the surface temperature. It is difficult to apply this method to the average surface temperature of an incineration facility. In this study, 20 Korean waste incineration facilities were selected for heat loss estimates based on waste incineration temperature, incinerator type, and incineration capacity. Infrared thermal cameras were used to measure the surface temperatures of the waste incineration facilities.
        27.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        The paper industry requires continuous automation of processes ranging from injection of raw materials to initial paper processes and final processing. Thus, it is a capital- and equipment-intensive industry that requires large investments in facilities and consumes significant amounts of energy for production. Since the concept of a 'Waste Minimization and Sustainable Resource Circulation Society' is key waste management policy, the effective use of waste has been emphasized. To this end, there is significant research on energy conversion in waste incineration plants. Domestically, there is a desire to review and improve sustainable technology development systems in order to maximize thermal energy recovery in waste incineration plants. Therefore, this study compared the energy recovery rate calculation methods currently used in eight paper industry incineration plants. The lower heating value and energy recovery & use rate calculation methods were applied in accordance with the “waste resource energy recovery & use calculation method” located in Paragraph 2 of Article 3 in the Enforcement Decree of the “Wastes Control Act” of 2015. Calculations made using the current method (on the basis of output) showed an average energy recovery rate of 78.6% (75.5 ~ 82.8%), whereas the waste resource energy recovery & use rate calculation method (based on volume used) produced an energy recovery rate of 53.3% (42.5 ~ 74.8%).
        28.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Response measures to the resource circulation society and the new climate plan must be prepared by the central government in conjunction with local governments. The future directions of such measures can be established by investigating and evaluating trends in waste disposal currently in use by various cities and provinces. Against this backdrop, the current status of municipal waste generation and disposal in 16 Korean cities and provinces was examined. Although the percentage of waste recycled has increased, the rate of increase is declining. The percentage of waste disposed of in landfills has declined over time, but some landfills have already reached their limits. The amount of waste incinerated has grown more than the amounts recycled or disposed of in landfills. It will soon be necessary to develop measures that further increase the percentage of waste disposed of via incineration and improve the recovery of incineration-related energy. All cities and provinces should strive to improve the operating performance of their incineration facilities while reducing operating costs.
        29.
        2016.11 서비스 종료(열람 제한)
        지금껏 안정적으로 폐기물을 처분해왔던 방법에 변화를 가져올 정책과 국제협정이 최근 제정 및 체결되었다. 첫 번째는 2016년 5월 29일 자원순환기본법이 제정・공포되어 2018년 1월 1일부터 시행될 예정으로 자원순환사회 기반을 구축하기 위한 제도적 기틀을 마련한 것이다. 지금까지 자원의 절약과 재활용촉진에 관한 법률에 의해 추진해오던 것에 비하면 자원순환에 관해서는 다른 법률에 우선하기에 폐기물 처분방법에 있어 변화가 있을 것으로 본다. 두 번째는 2015년 12월 프랑스 파리에서 열린 2020년 이후의 신기후체제가 논의되어 모든 국가가 온실가스 감축에 참여하는 파리협정을 체결하였다. 이로 인해 폐기물부문도 온실가스 감축을 위한 방안과 실행계획 마련이 있을 것으로 본다. 이 같은 정책과 국제협정이 지금껏 안정적으로 처분해왔던 폐기물관리에 일정부분 변화를 가져올 수밖에 없는 상황이다. 감량 목적의 단순 소각처분이 아닌 자원이 순환하고 온실가스 감축을 위해 에너지를 최대한 회수하기 위한 방안 마련이 필요한 것이다. 우리나라는 선진화된 폐기물정책 시행으로 인해 폐기물 감량이나 재활용에 있어서는 선도적 역할을 담당해오고 있으나 소각에너지 회수에 있어서는 미흡한 면이 있다. 이에 본 연구에서는 우리나라의 시도별 도시폐기물의 발생 및 처분 그리고 소각시설에 대한 현황을 2000년 이후 2014년까지 5년 주기의 변화 추이를 살펴봄으로써 앞으로 자원순환 정책과 기후변화 협약에 대응할 수 있는 방향성을 제언하고자 한다.
        30.
        2016.11 서비스 종료(열람 제한)
        최근 급속한 경제 성장과 소비 수준의 상승으로 폐기물 배출량이 급격히 증가했고, 질적으로도 다양화 되고 있다. 우리나라 폐기물 처리정책의 주요내용은 자원을 효율적으로 이용함으로써 자연으로부터의 자원채취를 최소화함과 동시에 자연으로 되돌려지는 폐기물을 최소화함으로써 자연환경을 보호하고 사람의 건강을 보존하는 것이다. 선․후진국을 막론하고 폐기물관리정책의 변화과정은 비슷하다. 이러한 폐기물의 적정처리와 국가 에너지자원의 활용측면에 있어서 매우 중요한 역할을 담당하고 있는 소각시설은 현재 정부가 추진 중에 있는 「자원순환사회전환촉진법」 제정에 따라 적지 않은 변화가 있을 것으로 판단된다. 「자원순환사회전환촉진법」은 자원 및 에너지 소비량의 증가에 따라 계속적으로 폐기물 발생량이 증가하고 있는 국내의 사회적 구조를 고려할 때 폐기물의 발생억제 및 순환이용 촉진 등 자원순환사회 실현을 위한 기반 마련을 위하여 반드시 필요한 제도임에 틀림없다. 자원순환 성과관리제를 통하여 검토되고 있는 폐기물처분부담금(소각 또는 매립)은 에너지를 회수하지 않는 단순 소각시설의 경우 재활용비용에 버금가는 소각세를 부과한다. 그러나 일정기준 이상 에너지를 회수하여 사용하는 소각시설은 폐기물처분부담금의 감면혜택이 부여됨으로써 폐기물로부터 에너지를 회수하는 에너지회수시설과 단순 소각시설의 차별화가 뚜렷이 구분될 것으로 판단된다. 이에 본 연구에서는 생활폐기물 소각처리 시설(2개소, 3호기)을 대상으로 2015년 「폐기물관리법」 시행규칙 제3조제2항에 따른 “폐자원에너지 회수・사용률 산정방법”에 따라 에너지회수율을 산정하였다. 각각의 저위발열량 및 에너지회수・사용률 산정인자(Ep, Ew, Ei, Ef)는 3개월 동안의 계측기 측정값과 현장측정(배출가스 조성, 방열손실, 바닥재 보유열 등)결과를 바탕으로 산출하였다. 폐자원에너지 회수・사용률 산정결과로는 A시설(1호기・2호기)의 경우 생산량 기준 98.6 %, 사용량 기준 26.9 %로 산정되었다. B시설(1호기)에서는 생산량 기준 99.0 %, 사용량 기준 81.9 %로서 생산량 및 사용량 모두 높은 비율을 나타났다. 반면, A시설에서는 생산량 대비 사용량 기준 27.3 %로서 낮은 유효사용률을 나타내었으며, 유효사용률을 높이기 위해서는 다양한 방안(소내 소비감소, 소각시설의 효율적 가동, 폐열보일러의 효율 향상, 안정적인 수요처 확보 등)을 강구할 필요가 있을 것으로 판단된다.
        31.
        2016.11 서비스 종료(열람 제한)
        우리나라는 2030년 까지 모든 경제분야에 걸쳐 온실가스 배출을 약 37% 감축할 계획을 UNFCCC에 제출하였다. 이에 따라 온실가스 감축목표를 설정하고 부문별・업종별 배출권 할당량을 결정하고 있다. 따라서 보다 정확한 온실가스 배출량을 산정하는 것이 중요하며 현재는 배출활동별 온실가스 배출량 세부산정방법과 기준을 Tier 1, 2, 3, 4로 마련하여 관리하고 있다. 활동자료와 배출계수로 계산하는 Tier 1~3 기준에는 화석탄소함량(FCF)을 적용하여 폐기물에 포함된 바이오매스의 비율이 제외될 수 있는 반면, 소각시설에서 발생하는 배출가스 중의 온실가스를 직접적으로 측정하는 Tier 4(연속측정법)에서는 총 CO2만 측정 가능하기 때문에 온실가스 중의 바이오매스량을 제외하기 위해서는 화석연료 기원물질에 의한 배출량과 바이오매스 기원물질에 의한 배출량 구분이 필수적이다. 따라서 본 연구에서는 생활폐기물 소각시설과 사업장폐기물 소각시설 각각에서 연소 후 배출되는 가스를 가스샘플링장치를 이용하여 포집하였으며, 포집한 가스성분과 CO2 중의 바이오매스 기원물질량을 확인하였다. 기체시료 중의 바이오매스량을 측정분석하기 위해서 탄소동위원소를 이용한 가속기 질량분석기(Accelerator Mass Spectrometry)를 이용하였으며 보다 명확한 온실가스배출량 산정을 위한 기초자료로 활용하고자 한다.
        32.
        2016.11 서비스 종료(열람 제한)
        현재 국내 폐기물은 발생억제(Reduce), 재이용(Reuse), 재활용(Recycle)의 3R 정책을 바탕으로 발생량 감축 및 재활용을 유도하고 있다. 하지만 재활용이 불가능한 상태의 폐기물과 재활용처리 후 발생하는 부산물 등은 최종적으로 소각과 매립을 통하여 처리되고 있다. 이처럼 소각처리 될 수밖에 없는 폐기물은 단순 소각처리 되는 양을 최소화하고 연소과정에서 발생되는 에너지를 회수(Recovery)하여 열 또는 전력에너지로 적극 활용해야 할 필요가 있다. 하지만 현행 에너지 회수기준의 회수율 산정 방법은 생산에너지를 기준으로 하여 생산 후 버려지는 에너지도 포함됨으로써 실질적인 회수로 판단하기에 한계가 존재한다. 즉, 현행 에너지 회수기준은 회수율 증진을 위한 기술개발 및 시설개선 등과 같은 도입취지와 목적을 충분히 반영하지 못하고 있는 실정이다. 또한 에너지회수율 산정의 핵심 매개변수인 폐기물 저위발열량에 대한 측정 및 분석 방법의 명확한 공통기준이 없어 객관성이 부족한 상황이다. 이에 2015년 「폐기물관리법」 시행규칙 제3조제2항 “폐자원에너지 회수・사용률 산정방법”에서는 폐기물 소각 처리를 통하여 회수되는 에너지 중 실제 사용되는 에너지의 비율을 바탕으로 하는 에너지 회수・사용률 산정방법과 투입 폐기물로부터 기원하는 정확한 투입에너지 산정을 위한 저위발열량 산정방법을 제정・고시하였다. 본 연구에서는 새로 제정된 “폐자원에너지 회수・사용률 산정방법”을 바탕으로 국내 사업장폐기물 소각시설에서의 폐기물 저위발열량과 에너지 회수・사용률을 산정하였다. 산정에 요구되는 데이터는 3개월간의 업체 내실제 계측데이터를 활용하였으며, 계측이 불가능한 항목은 현장 측정 결과를 적용하였다. 대상시설은 스토커소각로 3기(시설 A, B, C)와 로터리킬른-스토커 병합방식 소각로 1기(시설 D)로 하였으며, 주별・월별・분기별로 구분하여 산정 결과를 도출하였다. 분기별 산정결과 폐기물 저위발열량의 경우 시설 A, B, C, D 각각 3,684kcal/kg, 2,960kcal/kg, 3,081kcal/kg, 2,794kcal/kg로 산정되었으며, 에너지회수・사용률은 각각 54.2%, 54.6%, 64.7%, 52.1%로 산정되었다. 이러한 결과는 에너지생산량 기준의 에너지회수율 대비 약 5∼20% 차이를 나타냈으며, 에너지회수・사용률을 높이기 위해서는 생산된 에너지 중 판매량을 최대화 하는 것이 가장 중요하고 효과적일 것으로 판단된다. 또한 장기적으로 보조연료 투입량과 전력 사용량 감축을 위한 기술개발과 시설공정 및 운영방식의 개선이 필요할 것으로 사료된다.
        33.
        2016.11 서비스 종료(열람 제한)
        ‘전국 폐기물 발생 및 처리현황’(환경부, 2014)에 따르면, 국내의 전국 폐기물 총 발생량은 매년 증가하는 추세이다. 건설 폐기물을 포함한 ‘14년도 총 폐기물 발생량은 388,486톤/일에 달하며, 지정폐기물을 포함하면 폐기물 발생량은 더 증가한다. 이렇게 발생한 폐기물은 매립, 소각, 재활용, 해역배출로 처리되었다. 하지만 국내의 육상 폐기물 해역배출은 런던협약에 ‘16년부터는 전면 금지되었으며, 매립과 재활용을 통한 폐기물의 처리는 한계가 있다. 지속적으로 발생량이 증가하는 폐기물의 처리와 지정폐기물, 재활용 금지 및 제한대상 폐기물을 처리하기 위하여 폐기물의 소각처리가 필수적으로 요구된다. 국내에서는 정책적으로 폐기물 소각시설의 폐자원에너지 회수와 사용에 대해 집중하고 있으며, 2015년에 폐기물 소각시설의 소각열에너지 회수・사용률 산정방법을 확정하여 2018년 1월 1일부터 자원순환기본법을 통해 시행할 것을 예고하였다. 사업장폐기물 소각시설의 소각열에너지 회수・사용률 산정방법에 따르면 열정산법을 이용해 입열과 출열을 산출하여 소각시설의 효율을 계산한다. 소각로의 방열손실은 에너지의 회수 효율을 낮추는 출열 항목 중 한가지로 각 시설마다 측정하여 평가되어야 한다. 현재 방열손실 평가를 위한 소각로의 벽면 온도 측정은 지점측정법을 이용하여 실측되고 있다. 하지만 접촉식 온도 측정은 대상의 접촉 지점마다 온도가 다르게 측정 될 수 있으므로 대상 시설의 평균 표면온도를 정확하게 측정하는 것이 어렵다. 비접촉 방식으로 온도를 측정하는 적외선 열화상 카메라는 넓은 면적의 온도를 동시에 측정 가능하며 대상 시설의 평균 온도를 비교적 정확하게 측정 할 수 있다. 따라서 본 연구에서는 폐기물 소각시설의 출열 항목 중 방열손실의 측정 및 평가를 위해 적외선 열화상 카메라를 이용하였으며, 소각로 표면 온도 측정방법과 소각시설의 방열손실 산정 방법을 정립하였다.
        34.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        The lower heating value is the basic unit to calculate annual energy in estimating an energy gain factor. Reliability of an energy gain factor depends on the accuracy of the lower heating value. However, the deviation of heating value is large, and there is no common standard. Thus, the present methods of estimating the lower heating value (calorimeter method, ultimate analysis method, etc.) are inferior in accuracy. Besides, the conventional estimation method cannot reflect the waste's inhomogenous properties or seasonal effect. Hence, this study estimated the lower heating value on the basis of relation between heat input and heat output in equilibrium state by using the law of conservation of energy and the first law of thermodynamics for industrial waste incineration facilities (57 facilities) currently in operation. In the case of self-contained boilers, the lower heating value was an average of kcal/kg (1,984-6,476 kcal/ kg), and in case of separable boilers, the lower heating value was estimated to be an average of 3,787 kcal/kg (1,621- 486 kcal/kg).
        35.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to analyze the physicochemical characteristics of bottom-ash recycling from municipal solid waste incineration (MSWI) and investigate the possibility of the use of bottom ash for Lightweight Aggregate for Structural Concrete and Bottom Ash Aggregate for Road Construction according to Korean Industrial Standards (KS). Samples were taken from the MSWI bottom ash collected at the resource recovery facilities “A” and “B.” In the results, both samples did not satisfy the criteria of the particle sizes. In particular, the two samples failed to comply with the physical and chemical characteristics criteria of the Lightweight Aggregate for Structural Concrete. On the other hand, both bottom ash samples met the physical characteristics criteria of the Bottom Ash for Road Construction. Therefore, the recycling of Bottom Ash Aggregate for Road Construction can be more a suitable method for recycling, provided that proper pre-treatment as a screening process for bottom ash is performed.
        36.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        This study analyzed response characteristics of Nitrogen Oxide according to injection location and change of injectionamounts by spraying food waste on the combustion platform and the latter part of the first combustion chambers inincinerators. The analytical results have found to have no major difficulties in keeping more than 850oC, the legal standardof the 2nd combustion chamber according to injection of food waste in all the test subject facilities. For spraying foodwaste in the combustion platform in the first combustion chambers, the removal efficiency of 14.76% was shown as NSRis 2.98. For spraying food waste in the latter part of the first combustion chambers, the removal efficiency of 46.40%was shown as NSR is 0.95. On the other hand, when food waste of 3 tons per hour respectively is sprayed on thecombustion platform and the latter part of the first combustion chambers, the highest removal efficiency of 84.97% wasshown as NSR is 1.02.
        37.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        This study attempted to find an optimum operation codition for co-incineration of food waste and industrial wastes, focusing on injection position and rate. As the result of analysis, during injection of food waste incineration facilities, atmospheric pollutant standard satisfied all requirement. However when injected into the primary combustion chamber, the dioxin exceeded emission standard. This result has been determined that contaminants generated as processing the more amount (150 ton/day) than the designed capacity (72 ton/day) emitted and exceeded not completely removed from the control facilities.
        38.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Waste electrical and electronic equipment (WEEE) has been received much attention recently due to rapid changes in materials and shorter replacement of consumer products. Most of WEEEs are collected and recycled at the designated recycling centers in Korea, and final residues after recycling, sorting and shredding them to separate valuable and recyclable parts in series are left as forms of shredded plastic mixtures, which would be a problem to be resolved. By further plastics separation the polyurethane foams are mostly remained and becomes waste to be treated by appropriate methods. Gasification to produce syngas and incineration to recover energy for such polyurethane foam waste could be utilized instead landfill presently treated. In this study the experiment was conducted to evaluate such performance characteristics of thermal processes. Pelletized solid refuse fuel (SRF) was fabricated to feed into the test furnace even though it was light with low density. Thermogravimetric analysis, proximate analysis and higher heating value were made. During gasification and incineration, gas composition with gaseous pollutants were measured. Due to nitrogen content in polyurethane, nitrogen containing gaseous substances such as NH3 and HCN were observed with varying equivalent air ratios (ERs). The assessment of polyurethane waste foam to energy using incineration and gasification was made with finding out the optimal condition of air injection to emit less pollutants in both operations. Produced syngas could be utilized as energy fuels by lowering pollutants emission.
        39.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Municipal Solid Wastes (MSW) are disposed of three types (recycling, incineration, landfill). The ashes made after the incineration are also recycled to minimize the volume of waste owing to reducing the amount of landfill. However, MSW incinerations (MSWI) in Seoul are not satisfied with the policy of Korea as a result of experiments about the chemical characteristics of the ash (Ignition loss, pH, Chloride, Cyanide, metals leaching). So, according to the policy, the MSWI in Seoul must be pretreated so as to recycle the MSWI. There are many pretreatments, three pretreatments (washing, weathering, CO2 aging) of which are selected through the literature review. Through Washing, the value of pH and chloride decrease. The optimal ratio (S/L) and time of Washing treatment is 1 : 10 (S/L) and 60 minutes, respectively. The CO2 aging method compensates the defect of weathering method which is required to react long-period time. After CO2 aging, pH and some Heavy metals decrease. So, We will compare and evaluate pre-treatment methods and we find the best method or new method.
        40.
        2015.05 서비스 종료(열람 제한)
        Incineration allows for the recovery of energy from combustible waste. It would be highly beneficial to society if this heat could be used efficiently. However, due to the difficulties involved with storing and transporting heat energy, consumers would need to live near incineration facilities in order to make efficient use of this heat energy. Moreover, it is usually difficult to achieve a balance between heat demand and supply. For instance, although there is a significant demand for heat in Northern Europe, the demand for electricity in that region is larger than the demand for heat in Central/Southern Europe. Hence, the preferred form of energy recovery differs depending on the nation or regional conditions. However, there are no limitations with regard to electricity because it can be used in a variety of ways. As a result, leading countries such as those in the European Union and the United States have been developing technologies and building facilities to recover electricity. In Korea, stable operation (steam condition 200-300℃, 20-25bar) was given priority over energy recovery because the country’s background with regard to the measure for dioxin is different from that of Europe or the United States. In addition, the produced energy has been mostly self-consumed rather than sold. While Korea is implementing incineration energy recovery, the country’s incineration power generation is considerably lower than that of leading nations. According to the 6thbasic plan for power supply(2013–2027), which was announced in 2013, the government of Korea is planning to secure a power generation capacity of 688 MW (as of 2012, a level of 74 MW was attained) from waste. Accordingly, this paper examined trends and efficiency improvements for incineration power generation in leading countries.
        1 2 3