In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ˚C and ~ 50 % at 220 ˚C.
We report on the fabrication and photoelectrochemical(PEC) properties of a Cu2O thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in Cu2O thin film as an efficient photoelectrode for solardriven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated Cu2O/ZnO p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the Cu2O/ZnO photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., 0.77 mA/cm2 at 0.5 V vs Hg/HgCl2 in a 1 mM Na2SO4 electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs Hg/ HgCl2, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.
We report on the efficient detection of NO gas by an all-oxide semiconductor p-n heterojunction diode structure comprised of n-type zinc oxide (ZnO) nanorods embedded in p-type copper oxide (CuO) thin film. The CuO thin film/ZnO nanorod heterostructure was fabricated by directly sputtering CuO thin film onto a vertically aligned ZnO nanorod array synthesized via a hydrothemal method. The transport behavior and NO gas sensing properties of the fabricated CuO thin film/ ZnO nanorod heterostructure were charcterized and revealed that the oxide semiconductor heterojunction exhibited a definite rectifying diode-like behavior at various temperatures ranging from room temperature to 250 oC. The NO gas sensing experiment indicated that the CuO thin film/ZnO nanorod heterostructure had a good sensing performance for the efficient detection of NO gas in the range of 2-14 ppm under the conditions of an applied bias of 2 V and a comparatively low operating temperature of 150 oC. The NO gas sensing process in the CuO/ZnO p-n heterostructure is discussed in terms of the electronic band structure.
An effect of thermal annealing on activating phosphorus (P) atoms in ZnO nanorods (NR) grown using a hydrothermal process was investigated. NH4H2PO4 used as a dopant source reacted with Zn2+ ions and Zn3(PO4)2 sediment was produced in the solution. The fact that most of the input P elements are concentrated in the Zn3(PO4)2 sediment was confirmed using an energy dispersive spectrometer (EDS). After the hydrothermal process, ZnO NRs were synthesized and their PL peaks were exhibited at 405 and 500 nm because P atoms diffused to the ZnO crystal from the Zn3(PO4)2 particles. The solubility of the Zn3(PO4)2 initially formed sediment varied with the concentration of NH4OH. Before annealing, both the structural and the optical properties of the P-doped ZnO NR were changed by the variation of P doping concentration, which affected the ZnO lattice parameters. At low doping concentration of phosphorus in ZnO crystal, it was determined that a phosphorus atom substituted for a Zn site and interacted with two VZn, resulting in a PZn-2VZn complex, which is responsible for p-type conduction. After annealing, a shift of the PL peak was found to have occurred due to the unstable P doping state at high concentration of P, whereas at low concentration there was little shift of PL peak due to the stable P doping state.
ZnO nanorods were successfully fabricated on Zn foil by chemical bath deposition (CBD) method. The ZnO precursor concentration and immersion time affected the surface morphologies, structure, and electrical properties of the ZnO nanorods. As the precursor concentration increased, the diameter of the ZnO nanorods increased from ca. 50 nm to ca. 150 nm. The thicknesses of the ZnO nanorods were from ca. 1.98μm to ca. 2.08μm. ZnO crystalline phases of (100), (002), and (101) planes of hexagonal wurtzite structure were confirmed by XRD measurement. The fabricated ZnO nanorods showed a photoluminescene property at 380 nm. Especially, the ZnO nanorods deposited for 6 h in solution with a concentration of 0.005M showed a stronger (101) peak than they did (100) or (002) peaks. In addition, these ZnO nanorods showed a good electrical property, with the lowest resistance among the four samples, because the nanorods were densely in contact and relatively without pores. Therefore, a ZnO nanorod substrate is useful as a highly sensitive biochip substrate to detect biomolecules using an electrochemical method.
ZnO nanorods for gas sensors were prepared by a hydrothermal method. The ZnO gas sensors were fabricated on alumina substrates by a screen printing method. The gas-sensing properties of the ZnO nanorods were investigated for CH4 gas. The effects of growth time on the structural and morphological properties of the ZnO nanorods were investigated by X-ray diffraction and scanning electron microscope. The XRD patterns of the nanocrystallized ZnO nanorods showed a wurtzite structure with the (002) predominant orientation. The diameter and length of the ZnO nanorods increased in proportion to the growth time. The sensitivity of the ZnO sensors to 5 ppm CH4 gas was investigated for various growth times. The ZnO sensors exhibited good sensitivity and rapid response-recovery characteristics to CH4 gas, and both traits were dependent on the growth time. The highest sensitivity of the ZnO sensors to CH4 gas was observed with the growth time of 7 h. The response and recovery times were 13 s and 6 s, respectively.
ZnO nanorod gas sensors were prepared by an ultrasound radiation method and their gas sensing properties were investigated for NO gas. For this procedure, 0.01, 0.005 and 0.001M of zinc nitrate hydrate [Zn(NO3)2 · 6H2O] and hexamethyleneteramine [C6H12N4] aqueous solutions were prepared and then the solution was irradiated with high intensity ultrasound for 1 h. The lengths of ZnO nanorods ranged from 200 nm to 500 nm with diameters ranging from 40 nm to 80 nm. The size of the ZnO nanorods could be controlled by the concentration of solution. The sensing characteristics of these nanostructures were investigated for three kinds of sensor. The properties of the sensors were influenced by the morphology of the nanorods.