This research was carried out to find herbal preservatives for Makgeolli, as Makgeolli loses its commercial value due to overproduced acidic materials. When Makgeolli was kept at 25℃ to find the changes in acidity, total microbial cell number, yeast cell number, and bacterial species variety, a sudden increase of acidity as well as the disappearance of yeast cells occurred at day 6, and Makgeolli was changed to complete off-flavor. Acetobacter pasteurianus is the main acidifier in Makgeolli and shows a synergy effect in acid formation when cultured in combination with Lactobacillus casei. Among 12 herbs, the ethanol extract of Sutellaria baicalensis showed antimicrobial activity against A. pasteurianus, whereas the ethanol extract of Coptidis rhizoma showed antimicrobial activity against L. casei. Makgeolli added with Sutellaria baicalensis extracts demonstrated a lower acidity than that with Coptidis rhizoma extracts, which indicates that the inhibition of an acetic acid former is more important than that of a lactic acid former in Makgeolli preservation. Sutellaria baicalensis extracts prolonged the shelf life of Makgeolli by 1~2 weeks at a minimal inhibitory concentration (0.63 ㎎/㎖) during storage at 10℃.
This research was carried out in order to discover acid-forming bacteria during fermentation of Makgeolli, as Makgeolli loses its commercial value due to overproduced acidic materials. In Makgeolli kept at 25℃, a sudden increase of acidity as well as the disappearance of yeast cells occurred at day 6, whereas the total cell count and bacterial type remained unchanged; the result implies that a succession of bacterial types, including acid forming bacteria, occurred. Two acidforming bacteria were isolated from acidified Makgeolli and were identified as Acetobacter pasteurianus and Lactobacillus casei. When fresh and heat-treated Makgeolli were inoculated with Acetobacter pasteurianus and/or Lactobacillus casei, the greatest amount of acid was formed in Makgeolli inoculated with Acetobacter pasteurianus and Lactobacillus casei and also in Makgeolli with Acetobacter pasteurianus alone. This result indicates that Acetobacter pasteurianus is the main acidifier; furthermore, it shows the synergy effect in acid formation with Lactobacillus casei.
Gamma amino butyric acid (GABA), known as a non-protein amino acid and major inhibitory neurotransmitter in the brain, has several functional properties such as neurotransmission, induction of hypotension, tranquilizer, and diuretic effects. The purpose of this study was to isolate and identify lactic acid bacteria, producing high GABA in fermented soy curd. Thirty-two strains of tofu-forming lactic acid bacteria were isolated from kimchi which a traditional Korean food fermented with many kind of microorganism. Among 32 strains, four strains (strain No. 10, 104, 214, 249) formed firm soycurd. In order to select lactic acid bacteria having high GABA producing potential, the isolated strains were cultured in the soymilk and fermented for 48 hr at 37℃. A strain No. 383, which showed highest GABA contents in fermented soycurd, was identified as L. sakei by 16S rDNA sequencing and API analysis, and named as L. sakei 383. L. sakei 383 showed optimal growth up to 24 hr at 35℃ in MRS broth. The optimal time and temperature for GABA production were 18 hr and 35°C in soymilk. In the optimal condition time and temperature, GABA content of fermented soycurd by L. sakei 383 was 8.65 mg/100 g.