검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 135

        1.
        2024.10 구독 인증기관·개인회원 무료
        본 연구는 2017년부터 2021년까지 고속도로에서 발생한 약 9,600건의 사고를 분석하여 자율주행 긴급차량의 신속한 대응 능력을 향 상시키고자 하였다. 조사 결과, 2차 사고가 전체 사망자의 16.8%를 차지하며, 이들 중 약 74%가 선행사고와 관련이 있다는 점이 강조 된다. 이러한 통계는 긴급차량의 신속한 대처 능력이 피해를 최소화하는 데 얼마나 중요한지를 보여준다. 연구에서는 사고의 영향권을 정의하고, 이를 기반으로 긴급차량이 보다 안전하고 효율적으로 사고 현장에 접근할 수 있도록 하는 알고리즘을 개발하였다. 실제 교 통사고 데이터를 활용하여 사고 지속 시간과 다양한 변수를 고려한 기초 분석을 실시하였으며, 도로 특성, 사고 종류, 점유 차로 등 여러 요소를 반영하여 대응 기준을 설정했다. 알고리즘은 자율주행 차량이 실시간으로 주변 정보를 수집하고 신속하게 대응 방안을 마련할 수 있도록 설계되었다. 향후 연구에서는 알고리즘의 실제 도로 환경에서의 적용 가능성을 검토하고, 다양한 변수들을 포함한 추가 연구를 통해 성능을 더욱 개선할 계획이다. 이러한 연구 결과는 교통사고로 인한 피해를 줄이는 데 기여하고, 자율주행 기술을 활용하여 2차 사고의 가능성을 감소시키는 데 중요한 역할을 할 것으로 기대된다.
        2.
        2024.10 구독 인증기관·개인회원 무료
        도로 위 노면전차 트램를 포함한 다양한 이동수단 흐름을 원활하게 유지하기 위해서는 효율적인 교통 신호 제어가 필요하다. 검증 되지 않은 기술의 현장 평가는 교통안전 측면에서 위험하기에 대부분 가상환경을 통해 적용 기술검증을 선행한다. 본 연구는 다양한 교통신호 제어 알고리즘을 센터 수준에서 적용하는 가상 실험환경 마련을 위한 기능적 요구사항을 정의한다. 기능적 요구사항으로 가 상환경 센터 기반으로 실험을 시작하거나 중지하는 기능, 교통량 등 입력값을 입력하는 기능 등의 기본적 요구사항을 도출하였다. 이 렇게 정의된 기능적 요구사항은 향후 트램 등 다양한 교통수단을 대상으로 하는 가상환경 센터 구축 과정에 효율적으로 참조될 수 있 을 것으로 기대된다.
        3.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 유해 해양생물의 고밀도 출현을 조기에 탐지하기 위한 시스템 구축이다. 수중영상 기반 객체탐지 모델의 정 확도와 이미지 처리속도를 고려하여 실시간 적용에 적합한 YOLOv8m을 선정하였다. 영상 데이터를 해양생물 탐지 알고리즘에 적용한 결 과 다수의 어류 및 간헐적인 해파리 출현을 탐지하였다. 학습 모델의 검증 데이터에 대한 평균 정밀도는 0.931, 재현율은 0.881, mAP는 0.948로 산출되었다. 또한, 각 클래스별 mAP는 어류 0.970, 해파리 0.970, 살파 0.910로 모든 클래스에서 0.9(90%) 이상으로 산출되어 우수한 성능을 확인하였다. 과학어탐 시스템을 통해 객체의 탐지 범위와 시간에 따른 수중 객체탐지 결과를 확인할 수 있었으며 에코적분 격자 평균을 적용하여 시공간축으로 스무딩 처리된 결과를 얻을 수 있었다. 또한, 평균체적후방산란강도 값이 분석 도메인 내 객체탐지 여부에 따른 변동성을 반영하는 것을 확인할 수 있었다. 수중영상 기반 객체(해양생물)탐지 알고리즘, 환경조건(야간 포함)에 따른 수중영상 보정 기법, 과학어탐 시스템 기반의 정량화된 탐지결과를 제시하고 향후 다양한 사용처에서의 활용 가능성을 토의하였다.
        4,600원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응 답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성 에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드 의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예 측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하 였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불 규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.
        4,000원
        6.
        2024.04 구독 인증기관·개인회원 무료
        In agricultural ecosystems, the relationship between insect pests and hosts is important, as insect pests can invade hosts, increasing insect pest density that threatens the hosts’ health. Insect pests and hosts are negatively correlated and affect the environment around them. i.e., host health, environment, and insect pest density are causally related, and the environment affects insect pest density. Deep learning is method of machine learning based on neural network theory. This approach enables handling uncertain environmental factors that simultaneously impact the density of F. occidentalis. Environmental factors affecting the density fluctuation of F. occidentalis selected atmosphere factors, soil factors, and host factors. This study aims to F. occidentalis monitoring using deep learning models inputting environmental factors.
        8.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.
        4,200원
        9.
        2024.03 구독 인증기관·개인회원 무료
        도로의 포장 상태의 노후화나 관리미흡으로 인하여 시민의 사유 재산 중 주요한 요소인 자동차 등의 손상이나 자동차 사고 로 이어질 수 있어 큰 사회적 비용이 발생할 뿐 아니라, 시민들의 불편과 불만을 초래할 수 있다. 최근 도로 포장의 경우 포트홀 발생 건수와 그에 따른 민원 및 소송 건수가 증가해 행정력 및 예산이 낭비되고 있으며, 서울시의 경우 포장도로 노후화 추이가 증가함에 따라 유 지 관리 비용 또한 증가하고 있다. SOC 시설물 안전성 강화에 대한 사회적 요구는 지속적으로 증가하고 있어 한정된 예산의 효율적 활용을 위한 첨단 유지관리기술 도입이 시급하다.
        10.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        내화 구조물에서는 환기 계수, 재료 탄성 계수, 항복 강도, 열팽창 계수, 외력 및 화재 위치에서 불확실성이 관찰된다. 환기 불확실성 은 화재 온도에 영향을 미치고, 이는 다시 구조물 온도에 영향을 미친다. 이러한 온도는 재료 특성과 함께 불확실한 구조적 응답으로 이어지고 있다. 화재 시 구조적 비선형 거동으로 인해 몬테카를로 시뮬레이션을 사용하여 화재 취약성을 계산하는데, 이는 시간이 많 이 소요된다. 따라서 머신러닝 알고리즘을 활용해 화재 취약성 분석을 예측함으로써 효율성을 높이고 정확성을 확보하려는 연구가 진행되고 있다. 이 연구에서는 화재 크기, 위치, 구조 재료 특성의 불확실성을 고려하여 철골 모멘트 골조 건물의 화재 취약성을 예측 했다. 화재 시 비선형 구조 거동 결과를 기반으로 한 취약성 곡선은 로그 정규 분포를 따른다. 마지막으로 제안한 방법이 화재 취약성 을 정확하고 효율적으로 예측할 수 있음을 보여주었다.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시 한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소 산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해 석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였 다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.
        4,000원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시 한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소 산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해 석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였 다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.
        4,000원
        13.
        2023.11 구독 인증기관·개인회원 무료
        The high-level radioactive waste repository must ensure its performance for a long period of time enough to sufficiently reduce the potential risk of the waste, and for this purpose, multibarrier systems consisting of engineered and natural barrier systems are applied. If waste nuclides leak, the dominating mechanisms facilitating their movement toward human habitats include advection, dispersion and diffusion along groundwater flows. Therefore, it is of great importance to accurately assess the hydrogeological and geochemical characteristics of the host rock because it acts as a flow medium. Normally, borehole investigations were used to evaluate the characteristics and the use of multi-packer system is more efficient and economical compared to standpipes, as it divides a single borehole into multiple sections by installing multiple packers. For effective analyses and groundwater sampling, the entire system is designed by preselecting sections where groundwater flow is clearly remarkable. The selection is based on the analyses of various borehole and rock core logging data. Generally, sections with a high frequency of joints and evident water flow are chosen. Analyzing the logging data, which can be considered continuous, gives several local points where the results exhibit significant local changes. These clear deviations can be considered outliers within the data set, and machine learning algorithms have been frequently applied to classify them. The algorithms applied in this study include DBSCAN (density based spatial clustering of application with noise), OCSVM (one class support vector method), KNN (K nearest neighbor), and isolation forest, of which are widely used in many applications. This paper aims to evaluate the applicability of the aforementioned four algorithms to the design of multi-packer system. The data used for this evaluation were obtained from DB-2 borehole logging data, which is a deep borehole locates near KURT.
        14.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A model for minimizing cutting loss and determining the optimum layout of blocks in pavements was developed in this study. METHODS : Based on literature review, a model which included constraints such as the amount, volume, overlap, and pattern, was developed to minimize the cutting loss in an irregular pavement shape. The Stach bond, stretcher bond, and herringbone patterns were used in this model. The harmony search and particle swarm algorithms were then used to solve this model. RESULTS : Based on the results of the model and algorithms, the harmony search algorithm yielded better results because of its fast computation time. Moreover, compared to the sample pavement area, it reduced the cutting loss by 20.91%. CONCLUSIONS : The model and algorithms successfully optimized the layout of the pavement and they have potential applications in industries, such as tiling, panels, and textiles.
        4,000원
        15.
        2023.10 구독 인증기관·개인회원 무료
        A causality exists between insect density and plant health, where plant health is affected by both the plant’s potential and environmental factors. In other words, causality is possible between insect density and environmental factors, allowing for the analysis of insect density based on these environmental factors. Machine learning enables studying insect density alongside environmental factors, providing insights into the causality between insects, the environment, and plant health. Machine learning is a methodology that involves the design of models by learning patterns from input data. This study aims to predict F. occidentalis density by sampling environmental factors and applying them to machine learning models.
        17.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier’s abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.
        4,300원
        18.
        2023.07 구독 인증기관·개인회원 무료
        Algorithms are rapidly altering the way society operates (SIOP, 2020). Algorithms are used in modern businesses for tasks such as hiring, advising investors on financial matters, recommending new products to customers (Shankar, 2018). However, lay people frequently oppose them, a phenomenon known as algorithm aversion (e.g., Dietvorst et al., 2015). While prior research tries to address this issue by identifying cognitive and affective predictors of algorithm aversion, we seek to contribute to the algorithm aversion literature by investigating an understudied antecedent of people’s support for algorithm adoption—their cultural values (Dietvorst & Bartels, 2022).
        1 2 3 4 5