검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 176

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This article presents the crucial role played by the French underground research laboratory (URL) in initiating the deep geological repository project Cigéo. In January 2023, Andra finalized the license application for the initial construction of Cigéo. Depending on Government’s decision, the construction of Cigéo may be authorized around 2027. Cigéo is the result of a National program, launched in 1991, aiming to safely manage high-level and intermediate level long-lived radioactive wastes. This National program is based on four principles: 1) excellent science and technical knowledge, 2) safety and security as primary goals for waste management, 3) high requirements for environment protection, 4) transparent and openpublic exchanges preceding the democratic decisions and orientations by the Parliament. The research and development (R&D) activities carried out in the URL supported the design and the safety demonstration of the Cigéo project. Moreover, running the URL has provided an opportunity to gain practical experience with regard to the security of underground operations, assessment of environmental impacts, and involvement of the public in the preparation of decisions. The practices implemented have helped gradually build confidence in the Cigéo project.
        4,600원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 중·저준위 방사성폐기물은 영구적 격리를 위해 처분장에 매립하고 있으며 그 위치는 경주에 있다. 이러한 방 사성폐기물의 영구적인 격리를 위한 처분시설은 공학적 방벽과 자연 방벽으로 구성되어 있으며 자연 방벽을 특성을 파악 하기 위하여 한국원자력환경공단에서는 2006년부터 부지특성조사를 수행하였고, 이후 부지감시 및 조사계획에 따른 감시 를 수행하여 부지특성의 변화를 지속적으로 확인하고 있다. 중저준위 방폐장의 수리지화학적 환경은 자연 방벽의 평가를 위해 중요한 요소로 손꼽히고 있으나 동해와 가까운 경주의 지역적 특성상 해수의 영향을 반드시 고려해야 한다. 따라서 본 연구에서는 처분 부지의 지하수 관정 7개 및 관정의 심도별 수질 자료를 취합해 지하수 자료 총 30개를 해수 2개소와 비교 분석하여 수리지화학적 환경을 해석하였다. 분석 자료는 수질 10개 항목(온도, EC, HCO3, Na, K, Ca, Mg, Cl, SO4, SiO2)을 2017년 3분기부터 2022년 3분기까지 총 5년간 20회의 자료를 활용하였다. 특히, EC, HCO3, Na, Cl의 농도 변화 를 통해 연구 지역의 배경 농도 및 관정의 구간별 해수의 영향을 파악하였으며, 시계열 군집 분석을 통해 담수, 기수, 해 수의 분류를 시도하였다. 그 결과, 기존의 모니터링 방법으로는 확인하지 못한 부지내 수리지화학적 변화를 제시하였다.
        4,600원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Safety assessments for geological disposal systems extend over tens of thousands of years, taking into account the radiotoxicity decay period of spent nuclear fuel. During this extensive period, the biosphere experiences multiple glacial cycles, and fluctuations in seawater amounts, attributed to the formation and melting of glaciers, lead to global sea level changes known as eustacy. These sea level changes can directly influence the land-sea interface and groundwater flow dynamics, consequently affecting the pathways of radionuclide transport - an essential element of dose assessment. Therefore, this study aims to investigate how glacial cycles and sea level changes impact radionuclide transport within geological disposal systems, especially in the biosphere. To achieve this objective, we obtained climate evolution data including sea level changes for the Korean Peninsula over a 200,000-years, simulated by a General Circulation Model (GCM). These data were then employed to predict site and hydrology evolutions. The study site was conceptualized biosphere of Artificial Disposal System (ADioS), and we utilized the Soil and Water Assessment Tool (SWAT) to simulate hydrological evolution. These datasets, encompassing climate, site, and hydrology evolution, were collectively employed as inputs for the biosphere module of Adaptive Process-Based Total System Performance Assessment Framework (APro). Subsequently, the APro’s biosphere module calculated radionuclide transport in groundwater flow and its release into surface water bodies, considering the influences of glacial cycles and sea level changes. The results show that hydrologic changes due to sea level change are relatively minor, while the impact of sea level change on groundwater flow and discharge is significant. Additionally, we identified that among the water bodies within ADioS, including rivers, lakes, and oceans, the ocean exhibits the most substantial radionuclide outflow throughout the entire period. The spatiotemporal distributions of radionuclides computed within APro will be further processed into a grid format and used as input for the dose assessment module. Through this study, it was possible to determine the impact of long-term glacial cycles and sea level changes on radionuclide transport. Additionally, this module can serve as a valuable tool for providing the spatiotemporal variability of radionuclides required for enhanced dose assessments.
        4.
        2023.11 구독 인증기관·개인회원 무료
        EU taxonomy requires to solve problems for safe management of radioactive waste and disposal of spent fuel, which is a precondition for growing demand for nuclear power plant. Currently, Korea manages about 18,000 tons of high-level radioactive waste at temporary storage facilities in nuclear power plant sites, but such temporary storage facilities are expected to become saturated sequentially from 2031. Therefore, it is necessary to secure a permanent disposal facility to safely treat high-level radioactive waste. In accordance with the second basic plan for high-level radioactive waste management in 2021, it is necessary to establish requirements for regulatory compliance for the site selection and site acquisition, investigation and evaluation, and construction for the establishment of a deep geological disposal facility. In this study, we analyzed the regulatory policies and cases of leading foreign countries related to deep geological disposal facilities for high-level radioactive waste disposal waste such as IAEA, USA, Sweden, and Finland using data analysis methodology. To analyze a large amount of textbased document data, text mining is applied as a major technology and a verification standard that secures validity and safety based on the regulatory laws described so far is developed to establish a regulatory base suitable for domestic deep geological disposal status. Based on the collected data, preprocessing and analysis with Python were performed. Keywords and their frequency were extracted from the data through keyword analysis. Through the measured frequency values, the contents of the objects and elements to be regulated in the statutory items were grasped. And through the frequency values of words co-occurring among different sections through the analysis of related words, the association was obtained, and the overall interpretation of the data was performed. The results of analyzing regulations of major foreign countries using text mining are visualized in charts and graphs. Word cloud can intuitively grasp the contents by extracting the main keywords of the contents of the regulations. Through the network connection graph, the relationship between related words can be visually structured to interpret data and identify the causal relationship between words. Based on the result data, it is possible to compare and analyze the factors to be supplemented by analyzing domestic nuclear safety case and regulations.
        5.
        2023.07 구독 인증기관·개인회원 무료
        China is leading the global fashion market value in 2023 with consumers experiencing an integration of traditional consumption and production approaches to innovative ones triggered by the internet of things (IoT). This high speed ‘inspire and sell’ consumer conversion approach (ibid) is both enabling fashion consumption and introducing alternative approaches to end of life items. This finds Chinese consumers on the top of the global fashion consumption ranks raising even more the importance of sustainable practices. On an industry level, the shortened fashion cycles, the changes in item longevity, the low prices and the fast-moving consumer trends have attributed to an increasing waste generation as consumers discard clothes more frequently. Increasingly, studies alert to the availability of alternative end of life fashion practices, such as, swapping, renting selling etc offering more choices in terms of reducing fashion waste. Yet research related to these efforts seem to have a national or regional perspective and approach and most of the studies are located and focused on western societies.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Most of the spent nuclear fuel generated by domestic nuclear power plants (NPPs) is temporarily stored in wet storage which is spent fuel pool (SFP) at each site. Currently, in case of Kori Unit 2, about 93.6% of spent nuclear fuel is stored in SFP. Without clear disposal policy determined for spent nuclear fuel, the storage capacity in each nuclear power plant is expected to reach saturation within 2030. Currently, the SFP stores not only spent fuel but also various non-fuel assembly (NFA). NFA apply to all device and structures except for fuel rods inserted in nuclear fuel assembly. The representative NFA is control element driving mechanism (CEDM), in-core instrument (ICI), burnable poison, and neutral resources. Although these components are irradiated in the reactor, they do not emit high-temperature heat and high radiation like nuclear fuel, so if they are classified as intermediate level waste (ILW) and low level waste (LLW) and moved outside the SFP, positive effects such as securing spent fuel storage space and delaying saturation points can be obtained. Therefore, this study analyzes the status of spent fuel and Non Fuel Assembly (NFA) storage in SFP of domestic nuclear power plants. In addition, this study predict the amount of spent fuel and NFA that occur in the future. For example, this study predicts the percentage of current and future ICIs and control rods in the SFP when stored in the spent fuel storage rack. In addition, the positive effects of moving NFA outside the SFP is analyzed. In addition, NFA withdrawn from SFP is classified as ILW & LLW according to the classification criteria, and the treatment, storage, and disposal methods of NFA will be considered. The study on the treatment, storage, and disposal methods of NFA is planned to be conducted by applying the existing KN-12 & KN-18 containers and ILW & LLW containers being developed for decommissioning waste.
        7.
        2023.05 구독 인증기관·개인회원 무료
        The acceptance criteria for low and intermediate level radioactive waste disposal facilities in Korea to regulate that homogeneous waste, such as concentrated waste and spent resin, should be solidified. In addition, solidification requirements such as compressive strength and leaching test must be satisfied for the solidified radioactive waste solidified sample. It is necessary to develop technologies such as the development of a solidification process for radioactive waste to be solidified and the characteristics of a solidification support. Radioactive waste solidification methods include cement solidification, geopolymer solidification, and vitrification. In general, low-temperature solidification methods such as cement solidification and geopolymer solidification have the advantage of being inexpensive and having simple process equipment. As a high-temperature solidification method, there is typically a vitrification. Glass solidification is generally widely used as a stabilization method for liquid high-level waste, and when applied to low- and intermediate-level radioactive waste, the volume reduction effect due to melting of combustible waste can be obtained. In this study, the advantages and disadvantages of the solidification process technology for radioactive waste and the criteria for accepting the solidified material from domestic and foreign disposal facilities were analyzed.
        8.
        2023.05 구독 인증기관·개인회원 무료
        When decommissioning and operating nuclear power plants, a lot of radioactive waste in concentrated waste powder, slurry, sludge, and powder is generated. The radioactive waste, non-conformity for disposal, cannot be treated or disposed of, but is currently being stored instead. To dispose of the waste, the waste can be solidified by mixing with an appropriate solidification agent. However, when the solidification agent and powder particles are mixed as in the conventional method, the final volume of the waste form to be disposed of increases. In order to solve this problem, in this study, volume reduction was achieved, compared to the existing powder, by applying the roll compaction technology to mold the radioactive waste into compressed pellets. Soil, concrete, concentrate waste, and contaminated soil powder were used as test materials, and pellets were prepared under different operating conditions. Subsequently, a compressive strength test was performed to confirm the integrity and optimal process conditions of the manufactured pellets. However, in order to perform the compressive strength test, the upper and lower surfaces of the pellets must be horizontal, but the pellet has the shape of two tetrahedrons joined together. Hence, test specimens for measuring compressive strength were prepared by making a surface treatment jig. The compressive strength test showed a high strength of 5.20~28.20 MPa. The process conditions showing high compressive strengths were selected as the optimal process conditions. Finally, the volume reduction ratios were calculated by measuring the weight, density and volume of the manufactured pellets. The degrees of volume reduction of the manufactured pellets compared to the existing powder were checked. When the roll gap was 0 mm, the average reduction ratios of the test materials were 3.7 for the soil, 4.0 for the concrete, 4.6 for the concentrate waste, and 3.8 for the contaminated soil. When roll gap was 1 mm, the ratios were 2.7 for the soil, 2.9 for the concrete, 3.4 for the concentrate waste, and 2.8 for the contaminated soil. Therefore, from a conservative point of view (Roll gap = 1 mm), when powdered waste is formed into pellets, it means that the volume is reduced by 1/2.7 for soil, 1/2.9 for concrete, 1/3.4 for concentrated waste, and 1/2.8 for contaminated soil.
        9.
        2023.05 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS) for deep geological disposal of high-level radioactive waste requires a buffer material that can prevent groundwater infiltration, protect the canister, dissipate decay heat effectively, and delay the transport of radioactive materials. To meet those stringent performance criteria, the buffer material is prepared as a compacted block with high-density using various press methods. However, crack and degradation induced by stress relaxation and moisture changes in the compacted bentonite blocks, which are manufactured according to the geometry of the disposal hole, can critically affect the performance of the buffer. Therefore, it is imperative to develop an adequate method for quality assessment of the compacted buffer block. Recently, several non-destructive testing methods, including elastic wave measurement technology, have been attempted to evaluate the quality and aging of various construction materials. In this study, we have evaluated the compressive wave velocity of compacted bentonite blocks via the ultrasonic velocity method (UVM) and free-free resonant column method (FFRC), and analyzed the relationship among compressive wave velocity, dry density, thermal conductivity, and strength parameter. We prepared compacted bentonite block specimens using the cold isostatic pressure (CIP) method under different water content and CIP pressure conditions. Based on multiple regression analysis, we suggest a prediction model for dry density in terms of manufacturing conditions. Additionally, we propose an empirical model to predict thermal conductivity and unconfined compressive strength based on compressive wave velocity. The database and suggested models in this study can contribute to the development of quality assessment and prediction techniques for compacted buffer blocks used in the construction of a disposal repository.
        10.
        2023.05 구독 인증기관·개인회원 무료
        Spent nuclear fuel temporary storage in South Korea is approximately 70% of total storage capacity as of the 4th quarter of 2022 amount is stored. In addition, according to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for high-level radioactive waste disposal facilities has emerged. Globally, after the conclusion of the EU Taxonomy, for nuclear energy in order to become an ecofriendly energy, it is necessary to have a high-level radioactive waste disposal site and submit a detailed operation plan for high-level radioactive waste disposal site by 2050. Finland and Sweden have already received permission for the construction of high-level radioactive waste disposal facilities, and other countries, such as Switzerland, Japan, the United States, and Canada, are in the process of licensing disposal facilities. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Since it is a characteristic of the Systematic method to compose a scenario by combining these FEP, the Systematic method is the basic premise for the development of FEP. Completeness is important for FEP, and comprehensiveness is important for scenarios. However, combining all the FEP into one scenario is time-consuming and difficult to ascertain the comprehensiveness of the scenario. Therefore, an Integrated FEP list is being developed to facilitate tracking between FEP and scenarios by integrating similar FEP. In this study, during the integrated FEP development process, a method for utilizing experts that can be used for difficult parts of quantitative evaluation and a quantitative evaluation process through the method were presented.
        11.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
        12.
        2023.05 구독 인증기관·개인회원 무료
        Since spent nuclear fuel (SNF) should be isolated from the human life zone for at least 106 years, deep geological disposal (DGD) is considered a strong candidate for SNF management in many countries. Therefore, a disposal canister should be nearly immune to corrosion in such a long-term storage environment. Even though copper has a low corrosion rate of a few millimeters per million years in geological environments, the corrosion resistance of the copper welds must be preferentially validated, which inevitably occurs during the sealing of the disposal canister after the SNF is loaded. This is because the weld zone is a discontinuous area of microstructure, which can accelerate uniform and localized corrosion. In this study, the microstructural characteristics of copper welds in different welding conditions such as friction stir welding, electron beam welding, cold spray, were analyzed, focusing on the formation of microstructure, which affects resistance to corrosion. In addition, the microstructure and corrosion properties of the copper weld zone manufactured by recent wire-based additive manufacturing (AM) technology were experimentally evaluated. From this preliminary test result, it was found that the corrosion characteristics of the welds produced by the AM process using wire are comparable to those of the conventional forged copper plate.
        13.
        2023.05 구독 인증기관·개인회원 무료
        IAEA safety standards document and international programs (such as BIOMASS) related to the assessment of the biosphere around High Level Radioactive Waste (including Spent Nuclear Fuel) repositories require the assessment of the biosphere to use the assumption that the current natural environment and human society will be maintained, and at the same time, the evolution of the distant future changes also need to be taken into account. In Korea, which has not designated candidate disposal sites, it is necessary to investigate and predict the current state and future changes of the natural environment throughout Korea and apply it practically to Biosphere assessment (for BDCF derivation) for candidate disposal sites suitability assessment and Safety Case (for performance assessment) preparation for design, construction, operation, and post-closure management. To this end, the natural environment in the fields of Topography, Geology, Soil, Ecology, Weather and Climate, Animals and Plants, Hydrology, Ocean, Land-use, etc. and human society in the fields of Population Distribution, Spatial-Planning, Urban Form, Industrial-Structure, Lifestyle etc. are being investigated in the context of current status, past change records, and future change potential in the Korean Peninsula. This paper summarizes those investigations to date. This study referred Biomass-6 [IAEA] and National Atlas I (2019)/II (2020)/III (2021) [National Geographic Information Institute of the Korea Ministry of Land, Infrastructure and Transport].
        14.
        2023.05 구독 인증기관·개인회원 무료
        In order to use nuclear energy stably, high level radioactive waste including spent nuclear fuel that is inevitably discharged from nuclear power plants after electricity generation must be managed safely and isolated from the human living area for a long period of time. In consideration of the accumulated amount of spent nuclear fuel anticipated according to the national policy for HLW management, the area required for the deep geological repository facility is expected to be very large. Therefore, it is essential to conduct various studies to optimize the area required for the disposal of spent nuclear fuel in cases where the nationally available land is extremely limited, such as in Korea. In this study, as part of such research, the strategies and the requirements for the preliminary design of a high efficiency repository concept of spent nuclear fuel were established. For PWR spent nuclear fuel, seven assemblies of spent nuclear fuel can be accommodated in a disposal canister, and high burnup of spent nuclear fuel was taken into consideration, and the source terms such as the amount and time of discharge and disposal were based on the 2nd national basic plan. By evaluating the characteristics, the amount of decay heat that can be accommodated in the disposal canister was optimized through the combination of seven assemblies of spent nuclear fuel. The cooling period of the radiation source for the safety assessment of the repository system was set at 55 years, and the operation of the repository would start from 2070 and then the disposal schedule would be conducted according to the disposal scenario based on the national basic plan. With these disposal strategies described above, the main requirements for setting up the conceptual design of the high efficiency repository system to be carried out in this study were described below. • A combination of seven spent nuclear fuels with high heat and spent nuclear fuels with low heat was loaded into a disposal canister, and the thermal limit per disposal canister was 1,600 W. • In order to maintain the long-term performance of the repository, the maximum temperature design limit in the buffer material was set to 130°C. • In the deep disposal environment, the safety factor [yield strength/maximum stress] required to maintain the structural stability of the disposal canister should be maintained at 2.0 or higher so that integrity of the canister can be maintained even under long-term hydrostatic pressure and buffer swelling pressure in the deep disposal environment. • The repository should have a maximum exposure dose of 10 mSv/yr or less, which is the legal limit in case of a single event such as an earthquake, and the risk level considering natural phenomena and human intrusion, which is less than the legal limit of 10-6/yr. These strategies and requirements can be used to develop the high-efficiency geological disposal concept for spent nuclear fuels as an alternative disposal concept.
        15.
        2023.05 구독 인증기관·개인회원 무료
        As of 2023, there has been significant progress worldwide in the management of nuclear fuel’s spent radioactive waste (HLW). Several countries have made important strides in advancing their plans for the construction of deep geologic repositories (DGRs) to safely dispose of their nuclear waste. Finland led the way, with its nuclear waste management organization, Posiva Oy, submitting an application for an operating license for a DGR for spent fuel generated by the nuclear power plants of its owners. The facility, ONKALO, will be located on the island of Olkiluoto and is expected to begin final disposal in the mid-2020s. Sweden also approved SKB’s application to build a DGR in Forsmark, and an encapsulation plant next to the Clab interim storage facility. In Switzerland, Nagra selected Nordic Lagern as the site for the Swiss DGR, and is preparing the general license applications for the required facilities. Meanwhile, Canada’s Nuclear Waste Management Organization (NWMO) narrowed down the possible locations for its DGR to two, and expects to name its preferred site by fall 2024. The UK established four Community Partnerships to participate in the siting process for a DGR, with Nuclear Waste Services (NWS) responsible for identifying a site. Andra, the French organization responsible for managing all French radioactive waste, is expected to submit an application by the end of the year for a DGR in France that will contain HLW resulting from reprocessing of spent fuel assemblies from French nuclear power plants, as well as intermediate-level waste. Overall, the progress made by these countries represents a tangible and sustainable step forward in the management of spent fuel and HLW, and brings us closer to the safe and effective long-term disposal of nuclear waste.
        16.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y−1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.
        4,200원
        17.
        2022.10 구독 인증기관·개인회원 무료
        The IAEA recommended considerations for exemption regulations of consumer products containing greater amounts of radioactive isotopes than the amounts specified for generic exemption. One of the major considerations is the expected exposure dose should be less than 10 μSv/y and 1 mSv/y for general cases and low probability cases, respectively, in all predictable scenarios. Under this recommendation, many countries evaluated the radiation dose for exposure scenarios of various products in consideration of the national circumstances and, then, established their own specific exemption regulation. In Republic of Korea, the “Regulation on substances excluded from radioactive isotopes” was legislated to specify consumer products excluded from regulation. However, as the usage status and product specifications has changed over time, it is necessary to periodically verify the validity of the regulation criteria in the view of exemption justification. In this study, we developed the use and disposal scenarios in consideration of the domestic use of thorium-containing gas mantle and evaluated radiation dose of each scenario accordingly. The gas mantles are used as a wick for gas lanterns and the maximum activity of natural thorium contained among the currently available gas mantles is 12.5 kBq. Radioactive isotopes in the decay chain of natural thorium can be divided into three groups according to their physical characteristics, and exposure routes suitable for each group were considered in dose calculation. Currently, most gas mantles are installed in camping lanterns. Therefore, we developed use scenarios related to camping. The average number of camping trips and time spent at the campground were set by the data from Korea Tourism Organization. Tent sizes and vehicle specifications were determined by referring to surveys and products in Korea. The used gas mantle is disposed of in a garbage bag for general waste and transported to landfill or incinerator. We determined the amount of gas mantle discarded in landfill and incinerator by the data from Korea Environment Corporation. The exposure time and amount handled by an individual were determined by considering the number of waste collection vehicles, landfills, and incinerators. Although we assumed the maximum activity of the gas mantle for conservative evaluation, the calculated radiation doses for the use and disposal scenarios were below the general requirement (i.e., 10 μSv/y) in all scenarios.
        18.
        2022.10 구독 인증기관·개인회원 무료
        To efficiently manage the waste packages like drums, it is meaningful to utilize the data of placement and emplacement of disposed waste in geological storage. For the transparent and real-time management of disposal data, both technical as well as administrative factors must be included. To this end, MIRAE-EN Co., Ltd. has developed a radioactive waste tracking and management system (m-trekⓇ v1.0) through radioactive waste management life cycle which is supported by KETEP. Enhancing the functional features of m-trekⓇ, IoT-based drum location measuring and data of those drums, such as position, radionuclides, activity, and dose etc., are to be collected and monitored through data modeling and visualization, which might be utilized in emplacing the loaded drums according to specifically certain criteria of internal and external data of disposal site. Position measuring using Beacon utilizes Received Signal Strength Indicator (RSSI) to locate the correct position in 3D area. Since RSSI is affected by the surrounding environment, it is required to corrective optimization. In addition, error and deviation of previously applied Gaussian filter method, was corrected and improved through AI learning model. According to this location information and those data, the prototype in future provides the visualization of drum position and its relevant data for administrative purpose such as monitoring, emplacement and other management policy.
        19.
        2022.10 구독 인증기관·개인회원 무료
        Engineered barriers (concrete and grout) in Low- and Intermediate-Level Waste (L/ILW) disposal facilities tend to degrade by groundwater or rainfall water over a long period of time. During the degradation process, radionuclides stored in the disposal facility might be released into the pore water, which can pass through the natural rock barriers (granite and sedimentary rock) and may reach the near-field and far-field. In this transportation, radionuclide might be sorbed onto the engineered and natural rock barriers. In addition, the organic complexing agent such as ethylenediaminetetraacetic acid (EDTA) and α-isosaccharinic acid (ISA), is also present in pore water, which may affect the sorption and mobility of radionuclide. In this study, the sorption and mobility of 90Sr under different conditions such as two pHs (7 and 13), different initial concentrations of organic complexing agents (from 10-5 M to 10-2 M), and solutions (groundwater, pore water, and rainfall water) were investigated in a batch system. The groundwater was collected at the L/ILW disposal facility located at Gyeongju in South Korea. The pore water and rainfall water were artificially made in the laboratory. The concrete, grout, granite, and sedimentary rock samples were collected from the same study sites from where the groundwater was collected. The rock samples were crushed to 53-150 micrometers and were characterized by XRD, XRF, SEM-EDS, BET, and zeta potential analyzer. 90Sr concentration was determined using liquid scintillation counting. The sorption of 90Sr was described by distribution coefficients (Kd) and sorption reduction factor (SRF). In the case of EDTA, the Kd values of 90Sr remained constant from 10-5 M to 10-3 M and tended to decrease at 10-2 M, while in case of ISA the Kd values decreased steadily as the concentration of ISA was increased from 10-5 M to 10-3 M; However, a sudden reduction in the Kd values were observed above 10-2 M. In comparison to EDTA, ISA gave a higher SRF of 90Sr. Therefore, from the above results, it can be concluded that the presence of ISA has a greater effect on the sorption and mobility of radionuclide in the solutions than EDTA, and the radionuclide may reach near- and far-field of the L/ILW disposal facility.
        20.
        2022.10 구독 인증기관·개인회원 무료
        The Deep Borehole Disposal (DBD) method has various advantages, such as minimizing the use of site area and corrosion of the disposal container and improving long-term structural safety. However, it is necessary to review the problems that may occur in various technologies related to the emplacement and retrieval of the disposal container and the sealing of the borehole. Therefore, the purpose of this study is to evaluate the structural integrity of an emplacement and retrieval device (hereinafter, the disposal container connecting device) of a DBD container. The disposal connecting device was evaluated according to ANSI 14.6 and NUREG-0612 standards. The allowable stress should be less than the yield strength under the load condition of 3g. The length of the disposal container connecting device was about 2,900 mm, the diameter was 406 mm, and the weight was about 1.2 tons. In addition, 10 disposal containers weighing up to 2.2 tons were handled. The disposal container connecting device was made of stainless steel, and the maximum operating temperature was about 300°C. For structural evaluation, ABAQUS finite element analysis program was used. The analysis model was modeled only 1/2 part considering symmetry condition. The analysis model was modeled using 410,431 nodes and 344,119 solid elements. Three times load was applied to the weight of the disposal container. Axisymmetric conditions were applied to the symmetrical surface of the disposal container, and vertical restraints were applied to the upper lifting lugs. A surface-to-surface contact condition was applied to the part where the contact occurred. As a result of the analysis, the greatest stress was generated at the part supported by the clamp at the disposal container connector at 168.9 MPa. In the lugs and pins connecting the guide and the connecting device, a stress of 530.1 MPa was generated by shearing. In the bolts of the disposal container connecting device, a stress of 498MPa was generated and the safety margin was 1.73. A stress of 486.1 MPa was generated in the disposal container connecting device, and the safety margin was the smallest 1.16. As a result of the analysis, all components of the disposal container connecting device showed a safety margin of 1.16 or more at the maximum operating temperature and satisfied the allowable stress.
        1 2 3 4 5