검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Refined structured tin dioxide gets the amount of attraction because of its low cost and stability. The C@SnO2 nanospheres with mesoporous structures were produced using the hard template method in this work. The C@SnO2 is primarily gained attributed to the dehydration condensation of C6H12O6 and the hydrolysis of SnCl4 ·5H2O. The morphology of the C@SnO2 was analyzed by physical characterization and the diameter of the obtained C@SnO2 was around 138 nm. When C@SnO2 was applied to lithium-ion batteries as anode material, it performed outstanding electrochemical properties, with a capacity of 735 and 539 mA h g− 1 maintained at 1000 and 2000 mA g− 1, respectively. Furthermore, it exhibits favorable discharge/ charge cycle stability. This is probably because of the more chemically redox active sites provided by C@SnO2 nanocomposites and it also allows fast ion diffusion and electron migration.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
        4,000원
        4.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si (64.52 m2g−1) is much higher than that before etching Si/MgO (4.28 m2g−1) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
        4,000원
        5.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission elec-tron microscopy (HRTEM) revealed a densely packed high surface area of SP2-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and ther-mal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.
        4,000원
        6.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products (Mg2Si and Mg2SiO4) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., N2 adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.
        4,000원
        7.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.
        4,000원
        8.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 ˚C under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 ˚C has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of ~500 mAhg-1 and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of ~540 mAhg-1 with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.
        4,000원
        9.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Petroleum pitch and coke with wet mixture method or with dry mixture method were investigated to develop the composite anodic carbon material of high power lithium ion battery. Cokes coated with pitch were obtained by the heat treatment of mixture of cokes and pitch with different weight ratios at 800~1200℃. The charge and discharge characteristic of the consequent composite anodic carbon material assembled in batteries was tested. Cokes with wet mixture method have a smooth surface and their capacity changed little with changing temperature and content as compared to the cokes with dry mixture method. Although the reversible capacities showed different values by the anode manufacturing method, the composite anode with the mixture of 20 wt% of petroleum pitch and 80 wt% of coke showed the higher power capability and initial efficiency than the pitch based anode. However, the reversible capacity of the composite anode showed the reduced value as compared with the pitch based anode.
        4,000원
        10.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in μm) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after 100th cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.
        4,000원
        11.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The properties and electrochemical characteristics of anode material using pitch-coated graphite residue compounds by heat-treatment at 600℃ for 1 hour were investigated. The distance of layers of pitch-coated graphite residual compounds was 3.3539 a, which was as same as that of graphite. Its electrochemical and charge discharge characteristics were tested according to different four types of carbon material, natural graphite, pitch-coated graphite, amorphous graphite and pitch-coated graphite residual compounds, respectively. So it was shown the best charge-discharge characteristics in all of the samples. For the electrochemical and charge-discharge characteristics, although pitch-coated graphite residual compounds had different carbon contents 70% and 80%, these two samples were shown good electrochemical and charge-discharge characteristics.
        4,000원