검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of 0.2˚C/s, while the addition of 0.50 wt.% W did not, even at the cooling rate of 1.0˚C/s. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.
        4,000원
        2.
        2013.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of 0.2˚C/s, while the addition of 0.5 wt.% chromium did this at cooling rates above 3˚C/s. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.
        4,000원
        3.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about 880-890˚C with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a 400-450˚C tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of 350-400˚C. In the condition of quenching at 890˚C and tempering at 350˚C, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill 350˚C and dropped sharply above 400˚C regardless of the quenching temperature.
        4,000원