검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000oC and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500oC to 700oC for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200oC, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500oC for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350oC for 5–15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.
        4,000원
        2.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of 550 oC for 2 h followed by an aging treatment at 190 oC for 4 h. The microstructures of the heat treated specimen showed that the Mg2Si phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.
        4,000원
        3.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A study on the corrosion behavior of Inconel alloys and Incoloy 800H in molten salt of LiCl-Li2O was investigated at 650˚C for 24-312 hours in an oxidation atmosphere. The order of the corrosion rate was Inconel 600< Inconel 601< Incoloy 800H< Inconel 690. Inconel 600 showed the best performance suggesting that the content of Fe, Cr and Ni are the important factor for corrosion resistance in hot molten salt oxidation conditions. The corrosion products of Inconel 600 and Inconel 601 were Cr2O3 and NiFe2O4, In case of Inconel 690, a single layer of Cr2O3 was formed in the early stage of corrosion and an outer layer of NiFe2O4 and inner layer of Cr2O3 were formed with an increase of corrosion time. In the case of Incoloy 800H, Cr2O3 and FeCr2O4 were observed. Most of the outer scale of the alloys was observed to be spalled from the results of the SEM analysis and the unspalled scale which adhered to the substrate was composed of three layers. The outer layer, the middle one, and the inner one were Fe, Cr, and Ni-rich, respectively. Inconel 600 showed localized corrosion behavior and Inconel 601, 690 and Incoloy 800H showed uniform corrosion behavior. Ni improves the corrosion resistance and too much Cr and/or Fe content deteriorates the corrosion resistance.
        4,000원
        4.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrolytic reduction of a spent oxide fuel involves liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too crosive for typical structural materials. Therefore, it is essential to choose the optimum material for the process equipment for handling a molten salt. In this study, the corrosion behavior of pyro-carbon made by CVD was investigated in a molten LiCl-Li2O salt under an oxidation atmosphere at 650˚C and 750˚C for 72 hours. Pyro-carbon showed no chemical reactions with the molten salt because of its low wettability between pyro-carbon and the molten salt. As a result of XRD analysis, pyro-carbon exposed to the molten salt showed pure graphite after corrosion tests. As a result of TGA, whereas the coated layer by CVD showed high anti-oxidation, the non-coated layer showed relatively low anti-oxidation. The stable phases in the reactions were C(S), Li2CO3(S), LiCl(l), Li2O at 650˚C and C(S), LiCl(l), Li2O(S) at 750˚C. Li2CO(S) was decomposed at 750˚C into Li2O(S) and CO2(g).
        4,000원
        5.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about 880-890˚C with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a 400-450˚C tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of 350-400˚C. In the condition of quenching at 890˚C and tempering at 350˚C, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill 350˚C and dropped sharply above 400˚C regardless of the quenching temperature.
        4,000원
        6.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유전자 알고리즘은 적자 생존과 자연친화의 유전이론을 기초로 하여 이루어진 탐색기법이다. 유전자 알고리즘은 미분 정보 등과 같은 부가적인 정보없이 수렴함으로 전역적 최적값을 탐색하는 강인한 탐색기법으로 알려져 있다. 유전자 알고리즘은 연속형의 설계변수를 가지는 문제에서 세대가 계속 진행되어도 목적함수의 개선이 없이 조기에 수렴하는 경우가 있다. 또한 전역적 최적값 근처에서 수렴하지 못하고 목적함수값이 진동하여 수렴속도가 떨어지는 단점이 있다. 본 연구에서는 위와 같은 유전자 알고리즘의 단점을 보완하고자 재시동 조건과 엘리트 보존방법을 제안하였다. 수정된 유전자 알고리즘의 유용성을 검증하기 위해 3부재 트러스와 평면응력 외팔보에 적용하여 수렴 속도의 향상을 확인하였다.
        4,000원
        7.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        차량 충돌시 자동차의 시트는 승객 및 운전자를 보호해야 한다. 따라서 자동차시트는 충분한 강도를 가져야 하며 이것은 여러 가지 법규에 의해서 제재되고 있다. 물리적 실험 결과가 법규에 정한 규정치를 만족시키기 위해 과대설계 될 수 있다. 그러나 이것은 연비를 줄이기 위한 경량화의 만족이라는 설계요구에 상충한다. 본 논문에서는 헤드레스트 강도시험을 시뮬레이션하고 과대 설계되어 있다고 판단되는 어퍼암을 최적화 모델로 최적설계를 수행하였다. 순차 이차 계획법인 PLBA 알고리즘과 민감도 해석을 위하여 직접근사해석법을 사용하였다.
        4,000원