검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2017.11 구독 인증기관·개인회원 무료
        이산화탄소를 이용한 메탄올 합성반응과정에서 생성되는 물, 메탄올, 부탄올로 이루어진 혼합용액에서 제올라이트 분리막을 이용하여 물을 분리시키기 위해 투과증발실험을 진행하였다. 투과증발실험에서 사용된 분리막은 ㈜파인텍에서 합성된 제올라이트 분리막을 공급받아 사용하였다. 투과증발실험에서는 물을 분리하는 성능을 확인하기 위해 가스크로마토그래피 등의 실험장비와 성능지표 를 나타내는 계산식들을 사용하였다. 실험을 통해 물과 메탄올(분리계수 최대 250 이상), 물과 부탄올(분리계수 최대 1500 이상)의 혼합물에서 선택적으로 물 을 분리하는 것을 확인하였다. GMS (Generalized Maxwell Stefan) 이론을 적용 하여 2성분계의 투과증발 거동을 모사하였으며, 상수추정(parameter estimation) 을 통하여 제올라이트 비지지체의 흡착상수 및 확산상수를 구하였다.
        2.
        2015.05 구독 인증기관·개인회원 무료
        본 연구에서는 P E I 중공사막 표면에 고무상 고분자인 PDMS를 코팅한 모듈을 이용해 물-Butanol 혼합액의 분리특성을 향상시키는데 중점을 두었다. 먼저 A사에서 개발한 막 면적 890㎠ 모듈을 실험실 테스트 규모로 온도를 변화시키면서 농도 1wt.%의 1-Butanol - Water 혼합액에 대하여 투과증발 실험을 실시하였다. 반응온도 30℃에서 투과도는 58.6g/㎡hr을 나타내었고, 선택도는 9.2%를 나타내었다. 반응온도 40℃에서 투과도는 109.5g/㎡hr을 나타내었고, 선택도는 5.6%를 나타내었다. 반응온도 50℃에서 투과도는 206.9g/㎡hr을 나타내었고, 선택도는 3.0%를 나타내었다. 같은 방법으로 A사에서 개발한 막 면적 1㎡의 모듈을 파일롯 테스트에 적용하여 실험하여 본 결과 비슷한 경향을 보였다.
        3.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 PVDF/PDMS 복합막을 제조하여 부탄올을 농축을 위한 투과증발특성에 대해 알아보았다. 또한 복합막의 제조 방법에 따른 투과특성을 알아보기 위해 지지층의 PVDF 농도변화와 활성층의 경화조건에 따라 투과증발 최적막을 선정하였다. 이 막을 사용하여 공급액의 농도, 온도 및 순환 유속을 변화시켜 부탄올의 투과특성에 미치는 영향에 대해 알아보았다. 그 결과 공급액의 농도, 온도, 순환 유속이 증가할 경우 부탄올의 플럭스와 투과 농도가 증가함을 확인하였으며 상용막인 GKSS사의 PVDF/POMS 복합막과 비교한 결과 부탄올 투과 플럭스, 투과 농도, 선택도 등 모두 높은 값을 나타내었다.
        4,000원
        4.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        부탄올을 투과증발 공정으로 분리하기 위하여 복합공정에 의하여 투과증발막을 제조하였다. 상업용 poly(dime-thylsiloxane) (PDMS) 막을 plasma 처리시키거나, polysulfone, poly(ether imide) 막을 지지체로 사용하여 plasma 처리 및 PDMS 코팅의 복합공정을 적용하였다. 헥산계열과 실란계열 유기 화합물을 사용하여 PDMS막을 plasma 처리하였을 경우 막 표면의 소수성을 증가시켜서 부탄을 선택도가 12.56까지 향상되었다. 반면에 투과량은 막 표면의 소수성 증대와 free volume의 변화로 인해 1.15 kg/m 2 ⋅hr까지 감소되어 선택도와 반대의 성향을 나타내었다. 막의 소수성이 증가함에 따라 접촉각과 상대적 sorption 비가 증가하였고, 부탄을 선택도도 향상되었다. PDMS 코팅 용액에서 prepolymer의 함량이 높을수록 부탄올 선택도가 증가하였다. PDMS 코팅과 plasma 처리 공정의 순서에 따른 영향을 조사하였다. 부탄올과 노르말 헥산으로 plasma 처리할 경우 plasma처리, PDMS 코팅 순으로 제조된 막의 분리 성능이 우수하였고 hexamethyldisilane과 hex-amethyldisilazane을 사용한 경우에는 역순으로 제조된 막의 분리 성능이 더 우수한 것으로 나타났다.
        4,000원
        5.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        생물 발효 공정에서 생산되는 부탄올 수용액으로부터 부탄올을 농축시키기 위한 투과증발 공정의 flux와 선택도를 향상시키기 위하여 저온 plasma 처리 공정으로 막을 제조하였다. 플라즈마 처리 조건인 공급 power, 반응 시간, 단량체 공급 속도 등에 따른 영향을 조사하여 (W/FM)t의 최적값이 4.0389times10(sup)9 J.min/kg임을 확인하였으며, 이에 따른 최적의 막 제조 공정을 확립하였다. 여러 가지 유기 화합물로서 저온 플라즈마 처리된 막에 대하여 부탄올 분리 성능을 조사하였으며, 플라즈마 처리된 막에 대하여 물과 부탄올의 상대적 sorption 비와 접촉각을 측정하여 표면 분석을 하고자 하였으며, 그 상관 관계를 조사하였다. 접촉각과 상대적 sorption 비가 증가함에 따라 부탄올의 선택도는 0.186에서 3.525로 향상되었고, 부탄올 질량 flux는 0.042에서 0.567 kg/m2.hr로 향상됨을 볼 수 있었는데, 이는 막의 소수서이 증가함에 따라 막과 부탄올과의 친화력이 증가하였기 때문인 것으로 판단된다. 또한 사용된 유기 화합물과 물 또는 부탄올과의 친화력 정도를 알아보기 위해 heat of mixing을 측정하여 분리 성능과 비교하였으나 뚜렷한 경향성을 얻지 못하였다. 이것은 플라즈마 처리 시 유기 화합물이 분해되어 새로운 화합물을 형성하게 되어 유기 화합물 본래의 특성을 잃어버리기 때문인 것으로 생각된다.
        4,000원